具有明确构建块大小的NPC问题多目标进化搜索性能

Mark P. Kleeman, R. O. Day, G. Lamont
{"title":"具有明确构建块大小的NPC问题多目标进化搜索性能","authors":"Mark P. Kleeman, R. O. Day, G. Lamont","doi":"10.1109/CEC.2004.1330931","DOIUrl":null,"url":null,"abstract":"This research uses an explicit building block based MOEA to solve the multiobjective quadratic assignment problem. We use the multiobjective messy genetic algorithm II (MOMGA-II) to determine what role certain building blocks sizes play in filling up the Pareto front. Additionally, we investigate the role of the competitive template. The algorithm uses the competitive template by propagating it through all the building block sizes and by randomizing it for each building block size. We show that randomized competitive templates produce better results due to more exploration, and larger building block sizes are more common on the outer edges of the Pareto front because they fill more chromosome characteristics in the genotype space.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-objective evolutionary search performance with explicit building-block sizes for NPC problems\",\"authors\":\"Mark P. Kleeman, R. O. Day, G. Lamont\",\"doi\":\"10.1109/CEC.2004.1330931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research uses an explicit building block based MOEA to solve the multiobjective quadratic assignment problem. We use the multiobjective messy genetic algorithm II (MOMGA-II) to determine what role certain building blocks sizes play in filling up the Pareto front. Additionally, we investigate the role of the competitive template. The algorithm uses the competitive template by propagating it through all the building block sizes and by randomizing it for each building block size. We show that randomized competitive templates produce better results due to more exploration, and larger building block sizes are more common on the outer edges of the Pareto front because they fill more chromosome characteristics in the genotype space.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究采用一种基于显式构造块的MOEA来解决多目标二次分配问题。我们使用多目标凌乱遗传算法II (MOMGA-II)来确定某些构建块大小在填充帕累托前沿中所起的作用。此外,我们还研究了竞争模板的作用。该算法通过将竞争模板传播到所有构建块大小,并对每个构建块大小进行随机化,从而使用竞争模板。我们发现,随机竞争模板由于更多的探索而产生更好的结果,较大的构建块尺寸在帕累托前沿的外缘更常见,因为它们在基因型空间中填充了更多的染色体特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective evolutionary search performance with explicit building-block sizes for NPC problems
This research uses an explicit building block based MOEA to solve the multiobjective quadratic assignment problem. We use the multiobjective messy genetic algorithm II (MOMGA-II) to determine what role certain building blocks sizes play in filling up the Pareto front. Additionally, we investigate the role of the competitive template. The algorithm uses the competitive template by propagating it through all the building block sizes and by randomizing it for each building block size. We show that randomized competitive templates produce better results due to more exploration, and larger building block sizes are more common on the outer edges of the Pareto front because they fill more chromosome characteristics in the genotype space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信