在线社交网络中影响力传播者的最优检测

C. Tan, Pei-Duo Yu, Chun-Kiu Lai, Wenyi Zhang, H. Fu
{"title":"在线社交网络中影响力传播者的最优检测","authors":"C. Tan, Pei-Duo Yu, Chun-Kiu Lai, Wenyi Zhang, H. Fu","doi":"10.1109/CISS.2016.7460492","DOIUrl":null,"url":null,"abstract":"The wide availability of digital data in online social networks such as the Facebook offers an interesting question on finding the influential users based on the user interaction over time. An example is the clicking of the Facebook “Like” button to endorse a digital object (e.g., a post or picture) posted by other user. This online interaction activity connects users sharing similar opinions or disposition and spreads their influence. In this paper, we study the estimation problem of finding a small number of users in the online social network who are influential in maximizing the reach of a digital message when it originates from them. The digital interaction in the online social network can be modeled using an interaction graph, e.g., associate users through the past record of snapshot observations of Like's activity in Facebook. We propose a network centrality approach in which we first use graph convexity to characterize the relative influential level of users on the interaction graph. We then propose a message passing algorithm to rank these users in order to identify the influential spreaders who play a forward-engineering role in catalyzing the spread of a new message. A useful application is to schedule a cascade of endorsement of a digital marketing message or for a business entity with a Facebook presence to find a number of Facebook users to spread the word of new commercial products. Lastly, we describe the performance of our algorithm using a synthetic dataset.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Optimal detection of influential spreaders in online social networks\",\"authors\":\"C. Tan, Pei-Duo Yu, Chun-Kiu Lai, Wenyi Zhang, H. Fu\",\"doi\":\"10.1109/CISS.2016.7460492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wide availability of digital data in online social networks such as the Facebook offers an interesting question on finding the influential users based on the user interaction over time. An example is the clicking of the Facebook “Like” button to endorse a digital object (e.g., a post or picture) posted by other user. This online interaction activity connects users sharing similar opinions or disposition and spreads their influence. In this paper, we study the estimation problem of finding a small number of users in the online social network who are influential in maximizing the reach of a digital message when it originates from them. The digital interaction in the online social network can be modeled using an interaction graph, e.g., associate users through the past record of snapshot observations of Like's activity in Facebook. We propose a network centrality approach in which we first use graph convexity to characterize the relative influential level of users on the interaction graph. We then propose a message passing algorithm to rank these users in order to identify the influential spreaders who play a forward-engineering role in catalyzing the spread of a new message. A useful application is to schedule a cascade of endorsement of a digital marketing message or for a business entity with a Facebook presence to find a number of Facebook users to spread the word of new commercial products. Lastly, we describe the performance of our algorithm using a synthetic dataset.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在线社交网络(如Facebook)中数字数据的广泛可用性提出了一个有趣的问题,即根据用户的长期互动来寻找有影响力的用户。一个例子是点击Facebook的“喜欢”按钮来支持其他用户发布的数字对象(例如,帖子或图片)。这种在线互动活动将拥有相似观点或性格的用户联系起来,传播他们的影响力。在本文中,我们研究了在在线社交网络中寻找少数用户的估计问题,当数字消息来自他们时,他们对最大化数字消息的覆盖范围具有影响力。在线社交网络中的数字交互可以使用交互图来建模,例如,通过过去在Facebook上对Like活动的快照观察记录来关联用户。我们提出了一种网络中心性方法,其中我们首先使用图凸性来表征用户在交互图上的相对影响水平。然后,我们提出了一个消息传递算法来对这些用户进行排名,以确定在催化新消息传播中发挥前向工程作用的有影响力的传播者。一个有用的应用程序是为数字营销信息安排一连串的认可,或者为有Facebook存在的商业实体找到一些Facebook用户来传播新的商业产品。最后,我们使用一个合成数据集描述了我们的算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal detection of influential spreaders in online social networks
The wide availability of digital data in online social networks such as the Facebook offers an interesting question on finding the influential users based on the user interaction over time. An example is the clicking of the Facebook “Like” button to endorse a digital object (e.g., a post or picture) posted by other user. This online interaction activity connects users sharing similar opinions or disposition and spreads their influence. In this paper, we study the estimation problem of finding a small number of users in the online social network who are influential in maximizing the reach of a digital message when it originates from them. The digital interaction in the online social network can be modeled using an interaction graph, e.g., associate users through the past record of snapshot observations of Like's activity in Facebook. We propose a network centrality approach in which we first use graph convexity to characterize the relative influential level of users on the interaction graph. We then propose a message passing algorithm to rank these users in order to identify the influential spreaders who play a forward-engineering role in catalyzing the spread of a new message. A useful application is to schedule a cascade of endorsement of a digital marketing message or for a business entity with a Facebook presence to find a number of Facebook users to spread the word of new commercial products. Lastly, we describe the performance of our algorithm using a synthetic dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信