学习型多值逻辑网络的算法与实现

Qiping Cao, O. Ishizuka, Zheng Tang, H. Matsumoto
{"title":"学习型多值逻辑网络的算法与实现","authors":"Qiping Cao, O. Ishizuka, Zheng Tang, H. Matsumoto","doi":"10.1109/ISMVL.1993.289559","DOIUrl":null,"url":null,"abstract":"A learning technique and implementation for multiple-valued logic (MVL) networks are described. The learning problem is formulated as a minimization of an error function that represents a measure of distortion between actual and desired output. A gradient-based least-square-error minimization algorithm is used to minimize the error function, which in contrast to the backpropagation algorithm, does not involve a sigmoid function and requires only a simple sgn function in the learning rule. The algorithm trains the networks using examples and appears to be available in practice for most multiple-valued problems of interest. Circuit implementations of the learning MVL networks using CMOS current-mode circuits are described.<<ETX>>","PeriodicalId":148769,"journal":{"name":"[1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algorithm and implementation of a learning multiple-valued logic network\",\"authors\":\"Qiping Cao, O. Ishizuka, Zheng Tang, H. Matsumoto\",\"doi\":\"10.1109/ISMVL.1993.289559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A learning technique and implementation for multiple-valued logic (MVL) networks are described. The learning problem is formulated as a minimization of an error function that represents a measure of distortion between actual and desired output. A gradient-based least-square-error minimization algorithm is used to minimize the error function, which in contrast to the backpropagation algorithm, does not involve a sigmoid function and requires only a simple sgn function in the learning rule. The algorithm trains the networks using examples and appears to be available in practice for most multiple-valued problems of interest. Circuit implementations of the learning MVL networks using CMOS current-mode circuits are described.<<ETX>>\",\"PeriodicalId\":148769,\"journal\":{\"name\":\"[1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1993.289559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1993.289559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种多值逻辑(MVL)网络的学习技术及其实现。学习问题被表述为误差函数的最小化,该函数表示实际输出和期望输出之间的失真度量。使用基于梯度的最小二乘误差最小化算法来最小化误差函数,与反向传播算法相比,该算法不涉及sigmoid函数,在学习规则中只需要一个简单的sgn函数。该算法使用示例训练网络,并且在实践中似乎可用于大多数感兴趣的多值问题。描述了利用CMOS电流模电路学习MVL网络的电路实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm and implementation of a learning multiple-valued logic network
A learning technique and implementation for multiple-valued logic (MVL) networks are described. The learning problem is formulated as a minimization of an error function that represents a measure of distortion between actual and desired output. A gradient-based least-square-error minimization algorithm is used to minimize the error function, which in contrast to the backpropagation algorithm, does not involve a sigmoid function and requires only a simple sgn function in the learning rule. The algorithm trains the networks using examples and appears to be available in practice for most multiple-valued problems of interest. Circuit implementations of the learning MVL networks using CMOS current-mode circuits are described.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信