迈向数据的弹性增量化

David Zhao, Pavle Subotic, Mukund Raghothaman, Bernhard Scholz
{"title":"迈向数据的弹性增量化","authors":"David Zhao, Pavle Subotic, Mukund Raghothaman, Bernhard Scholz","doi":"10.1145/3479394.3479415","DOIUrl":null,"url":null,"abstract":"Various incremental evaluation strategies for Datalog have been developed that reuse computations for small input changes. These methods assume that incrementalization is always a better strategy than recomputation. However, in real-world applications such as static program analysis, recomputation can be cheaper than incrementalization for large updates. This work introduces an elastic incremental approach with two strategies that can be selected based on the impact of the input change. The first strategy is a Bootstrap strategy that recomputes the entire result for high-impact changes. The second is an Update strategy that performs an incremental update for low-impact changes. Our approach allows for a lightweight Bootstrap strategy suitable for high-impact changes, with the trade-off that Update may require more work for small changes. We demonstrate our approach using real-world applications and compare our elastic incremental approach to existing methods.","PeriodicalId":242361,"journal":{"name":"23rd International Symposium on Principles and Practice of Declarative Programming","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Elastic Incrementalization for Datalog\",\"authors\":\"David Zhao, Pavle Subotic, Mukund Raghothaman, Bernhard Scholz\",\"doi\":\"10.1145/3479394.3479415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various incremental evaluation strategies for Datalog have been developed that reuse computations for small input changes. These methods assume that incrementalization is always a better strategy than recomputation. However, in real-world applications such as static program analysis, recomputation can be cheaper than incrementalization for large updates. This work introduces an elastic incremental approach with two strategies that can be selected based on the impact of the input change. The first strategy is a Bootstrap strategy that recomputes the entire result for high-impact changes. The second is an Update strategy that performs an incremental update for low-impact changes. Our approach allows for a lightweight Bootstrap strategy suitable for high-impact changes, with the trade-off that Update may require more work for small changes. We demonstrate our approach using real-world applications and compare our elastic incremental approach to existing methods.\",\"PeriodicalId\":242361,\"journal\":{\"name\":\"23rd International Symposium on Principles and Practice of Declarative Programming\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd International Symposium on Principles and Practice of Declarative Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3479394.3479415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd International Symposium on Principles and Practice of Declarative Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479394.3479415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为Datalog开发了各种增量计算策略,这些策略可以对小的输入变化重用计算。这些方法假设增量化总是比重新计算更好的策略。然而,在诸如静态程序分析之类的实际应用程序中,对于大型更新,重新计算可能比增量化更便宜。这项工作引入了一种弹性增量方法,可以根据输入变化的影响选择两种策略。第一个策略是Bootstrap策略,它重新计算高影响变化的整个结果。第二种是Update策略,它对影响较小的更改执行增量更新。我们的方法允许轻量级的Bootstrap策略,适合于影响较大的更改,但代价是Update可能需要为小的更改做更多的工作。我们使用实际应用程序演示了我们的方法,并将我们的弹性增量方法与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Elastic Incrementalization for Datalog
Various incremental evaluation strategies for Datalog have been developed that reuse computations for small input changes. These methods assume that incrementalization is always a better strategy than recomputation. However, in real-world applications such as static program analysis, recomputation can be cheaper than incrementalization for large updates. This work introduces an elastic incremental approach with two strategies that can be selected based on the impact of the input change. The first strategy is a Bootstrap strategy that recomputes the entire result for high-impact changes. The second is an Update strategy that performs an incremental update for low-impact changes. Our approach allows for a lightweight Bootstrap strategy suitable for high-impact changes, with the trade-off that Update may require more work for small changes. We demonstrate our approach using real-world applications and compare our elastic incremental approach to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信