S. Pallavaram, P. D'haese, M. Remple, J. Neimat, C. Kao, Rui Li, P. Konrad, B. Dawant
{"title":"利用术中数据和功能图谱检测深部脑刺激手术中的脑转移:一项初步研究","authors":"S. Pallavaram, P. D'haese, M. Remple, J. Neimat, C. Kao, Rui Li, P. Konrad, B. Dawant","doi":"10.1109/ISBI.2009.5193059","DOIUrl":null,"url":null,"abstract":"Recently, many groups have reported on the occurrence of brain shift in stereotactic surgery and its impact on the procedure. A shift of deep brain structures by only a few millimeters can potentially increase the number of required microelectrode and/or macroelectrode tracks. This can cause complications and potentially affect implantation accuracy. Detecting intra-operative brain shift and, more significantly correcting for it intra-operatively can thus impact the procedure and its outcome. In this study, we have used intra-operative stimulation response data to assess brain shift. Using a shift free functional atlas containing therapeutic response to stimulation (efficacy) data from a population of patients we build statistical efficacy maps on new patients. We then compare the information provided by the maps with the actual intra-operative responses of those patients to detect brain shift. Our preliminary results show that by maximizing the correlation between statistical maps and intra-operative observations, it may be possible to detect intra-operative brain shift and potentially correct for it.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detecting brain shift during deep brain stimulation surgery using intra-operative data and functional atlases: A preliminary study\",\"authors\":\"S. Pallavaram, P. D'haese, M. Remple, J. Neimat, C. Kao, Rui Li, P. Konrad, B. Dawant\",\"doi\":\"10.1109/ISBI.2009.5193059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many groups have reported on the occurrence of brain shift in stereotactic surgery and its impact on the procedure. A shift of deep brain structures by only a few millimeters can potentially increase the number of required microelectrode and/or macroelectrode tracks. This can cause complications and potentially affect implantation accuracy. Detecting intra-operative brain shift and, more significantly correcting for it intra-operatively can thus impact the procedure and its outcome. In this study, we have used intra-operative stimulation response data to assess brain shift. Using a shift free functional atlas containing therapeutic response to stimulation (efficacy) data from a population of patients we build statistical efficacy maps on new patients. We then compare the information provided by the maps with the actual intra-operative responses of those patients to detect brain shift. Our preliminary results show that by maximizing the correlation between statistical maps and intra-operative observations, it may be possible to detect intra-operative brain shift and potentially correct for it.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting brain shift during deep brain stimulation surgery using intra-operative data and functional atlases: A preliminary study
Recently, many groups have reported on the occurrence of brain shift in stereotactic surgery and its impact on the procedure. A shift of deep brain structures by only a few millimeters can potentially increase the number of required microelectrode and/or macroelectrode tracks. This can cause complications and potentially affect implantation accuracy. Detecting intra-operative brain shift and, more significantly correcting for it intra-operatively can thus impact the procedure and its outcome. In this study, we have used intra-operative stimulation response data to assess brain shift. Using a shift free functional atlas containing therapeutic response to stimulation (efficacy) data from a population of patients we build statistical efficacy maps on new patients. We then compare the information provided by the maps with the actual intra-operative responses of those patients to detect brain shift. Our preliminary results show that by maximizing the correlation between statistical maps and intra-operative observations, it may be possible to detect intra-operative brain shift and potentially correct for it.