学习控制器经验包容的AFDM方法

S. Gopinath, I. Kar, R. Bhatt
{"title":"学习控制器经验包容的AFDM方法","authors":"S. Gopinath, I. Kar, R. Bhatt","doi":"10.1109/ICCTA.2007.23","DOIUrl":null,"url":null,"abstract":"In this paper a new method of experience inclusion in iterative learning controllers (ILC) is proposed. Approximate fuzzy data model (AFDM) technique has been adopted for the process of initial input selection. Instead of zero initial input assumption as in most of the ILC algorithms, in this paper the idea of using past trajectory tracking experiences in the selection of initial input for tracking a new trajectory tracking task has been highlighted. Performance of the proposed AFDM based ILC approach, on initial error reduction and error convergence issues are proved. Comparison with existing local learning technique on the selection of initial input for ILC algorithm proves the efficacy of the proposed AFDM based method","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AFDM Approach for Experience Inclusion in Learning Controllers\",\"authors\":\"S. Gopinath, I. Kar, R. Bhatt\",\"doi\":\"10.1109/ICCTA.2007.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new method of experience inclusion in iterative learning controllers (ILC) is proposed. Approximate fuzzy data model (AFDM) technique has been adopted for the process of initial input selection. Instead of zero initial input assumption as in most of the ILC algorithms, in this paper the idea of using past trajectory tracking experiences in the selection of initial input for tracking a new trajectory tracking task has been highlighted. Performance of the proposed AFDM based ILC approach, on initial error reduction and error convergence issues are proved. Comparison with existing local learning technique on the selection of initial input for ILC algorithm proves the efficacy of the proposed AFDM based method\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种迭代学习控制器中经验包含的新方法。初始输入选择过程采用近似模糊数据模型(AFDM)技术。与大多数ILC算法的零初始输入假设不同,本文强调了利用过去的轨迹跟踪经验来选择跟踪新轨迹跟踪任务的初始输入的思想。证明了基于ILC的AFDM方法在初始误差减小和误差收敛问题上的性能。通过与已有的局部学习方法在ILC算法初始输入选择上的比较,证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFDM Approach for Experience Inclusion in Learning Controllers
In this paper a new method of experience inclusion in iterative learning controllers (ILC) is proposed. Approximate fuzzy data model (AFDM) technique has been adopted for the process of initial input selection. Instead of zero initial input assumption as in most of the ILC algorithms, in this paper the idea of using past trajectory tracking experiences in the selection of initial input for tracking a new trajectory tracking task has been highlighted. Performance of the proposed AFDM based ILC approach, on initial error reduction and error convergence issues are proved. Comparison with existing local learning technique on the selection of initial input for ILC algorithm proves the efficacy of the proposed AFDM based method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信