时空数据张量分解的定量和定性分析

Thomas Henretty, M. Baskaran, J. Ezick, David Bruns-Smith, T. Simon
{"title":"时空数据张量分解的定量和定性分析","authors":"Thomas Henretty, M. Baskaran, J. Ezick, David Bruns-Smith, T. Simon","doi":"10.1109/HPEC.2017.8091028","DOIUrl":null,"url":null,"abstract":"With the recent explosion of systems capable of generating and storing large quantities of GPS data, there is an opportunity to develop novel techniques for analyzing and gaining meaningful insights into this spatiotemporal data. In this paper we examine the application of tensor decompositions, a high-dimensional data analysis technique, to georeferenced data sets. Guidance is provided on fitting spatiotemporal data into the tensor model and analyzing the results. We find that tensor decompositions provide insight and that future research into spatiotemporal tensor decompositions for pattern detection, clustering, and anomaly detection is warranted.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data\",\"authors\":\"Thomas Henretty, M. Baskaran, J. Ezick, David Bruns-Smith, T. Simon\",\"doi\":\"10.1109/HPEC.2017.8091028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent explosion of systems capable of generating and storing large quantities of GPS data, there is an opportunity to develop novel techniques for analyzing and gaining meaningful insights into this spatiotemporal data. In this paper we examine the application of tensor decompositions, a high-dimensional data analysis technique, to georeferenced data sets. Guidance is provided on fitting spatiotemporal data into the tensor model and analyzing the results. We find that tensor decompositions provide insight and that future research into spatiotemporal tensor decompositions for pattern detection, clustering, and anomaly detection is warranted.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

随着最近能够生成和存储大量GPS数据的系统的爆炸式增长,有机会开发新的技术来分析和获得对这些时空数据的有意义的见解。在本文中,我们研究了张量分解(一种高维数据分析技术)在地理参考数据集上的应用。为将时空数据拟合到张量模型中并分析结果提供了指导。我们发现张量分解为模式检测、聚类和异常检测的时空张量分解提供了见解,未来的研究是有必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data
With the recent explosion of systems capable of generating and storing large quantities of GPS data, there is an opportunity to develop novel techniques for analyzing and gaining meaningful insights into this spatiotemporal data. In this paper we examine the application of tensor decompositions, a high-dimensional data analysis technique, to georeferenced data sets. Guidance is provided on fitting spatiotemporal data into the tensor model and analyzing the results. We find that tensor decompositions provide insight and that future research into spatiotemporal tensor decompositions for pattern detection, clustering, and anomaly detection is warranted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信