William Arloff, Karl R. B. Schmitt, Luke J. Venstrom
{"title":"基于粒子群优化的刚性常微分方程参数估计方法","authors":"William Arloff, Karl R. B. Schmitt, Luke J. Venstrom","doi":"10.1504/IJCSM.2018.10016539","DOIUrl":null,"url":null,"abstract":"We propose a two-step method for fitting stiff ordinary differential equation (ODE) models to experimental data. The first step avoids integrating stiff ODEs during the unbounded search for initial estimates of model parameters. To avoid integration, a polynomial approximation of experimental data is generated, differentiated and compared directly to the ODE model, obtaining crude but physically plausible estimates for model parameters. Particle swarm optimisation (PSO) is used for the parameter search to overlook combinations of model parameters leading to undefined solutions of the stiff ODE. After initial estimates are determined, the second step numerically solves the ODE. This refines model parameter values through a bounded search. We demonstrate this method by fitting the model parameters (activation energies and pre-exponential factors) of the Arrhenius-based temperature-dependent kinetic coefficients in the shrinking core solid-state chemical kinetics model for the reduction of Cobalt (II, III) Oxide (Co\\(_3\\)O\\(_4\\)) particles to Cobalt (II) Oxide (CoO).","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A parameter estimation method for stiff ordinary differential equations using particle swarm optimisation\",\"authors\":\"William Arloff, Karl R. B. Schmitt, Luke J. Venstrom\",\"doi\":\"10.1504/IJCSM.2018.10016539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a two-step method for fitting stiff ordinary differential equation (ODE) models to experimental data. The first step avoids integrating stiff ODEs during the unbounded search for initial estimates of model parameters. To avoid integration, a polynomial approximation of experimental data is generated, differentiated and compared directly to the ODE model, obtaining crude but physically plausible estimates for model parameters. Particle swarm optimisation (PSO) is used for the parameter search to overlook combinations of model parameters leading to undefined solutions of the stiff ODE. After initial estimates are determined, the second step numerically solves the ODE. This refines model parameter values through a bounded search. We demonstrate this method by fitting the model parameters (activation energies and pre-exponential factors) of the Arrhenius-based temperature-dependent kinetic coefficients in the shrinking core solid-state chemical kinetics model for the reduction of Cobalt (II, III) Oxide (Co\\\\(_3\\\\)O\\\\(_4\\\\)) particles to Cobalt (II) Oxide (CoO).\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"231 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2018.10016539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10016539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
我们提出了一种两步法拟合刚性常微分方程(ODE)模型到实验数据。第一步避免了在无界搜索模型参数初始估计时积分僵硬ode。为了避免积分,生成实验数据的多项式近似,直接与ODE模型进行微分和比较,获得模型参数的粗略但物理上合理的估计。采用粒子群优化(PSO)进行参数搜索,忽略了模型参数组合导致的刚性ODE未定义解。确定初始估计后,第二步用数值方法求解ODE。这通过有界搜索来细化模型参数值。我们通过拟合缩核固体化学动力学模型中基于arrhenius的温度依赖动力学系数的模型参数(活化能和指数前因子)来证明这种方法,该模型用于将钴(II, III)氧化物(Co \(_3\) O \(_4\))颗粒还原为钴(II)氧化物(CoO)。
A parameter estimation method for stiff ordinary differential equations using particle swarm optimisation
We propose a two-step method for fitting stiff ordinary differential equation (ODE) models to experimental data. The first step avoids integrating stiff ODEs during the unbounded search for initial estimates of model parameters. To avoid integration, a polynomial approximation of experimental data is generated, differentiated and compared directly to the ODE model, obtaining crude but physically plausible estimates for model parameters. Particle swarm optimisation (PSO) is used for the parameter search to overlook combinations of model parameters leading to undefined solutions of the stiff ODE. After initial estimates are determined, the second step numerically solves the ODE. This refines model parameter values through a bounded search. We demonstrate this method by fitting the model parameters (activation energies and pre-exponential factors) of the Arrhenius-based temperature-dependent kinetic coefficients in the shrinking core solid-state chemical kinetics model for the reduction of Cobalt (II, III) Oxide (Co\(_3\)O\(_4\)) particles to Cobalt (II) Oxide (CoO).