一种基于k均值聚类的深度图生成方法

Siming Meng, Hao Jiang
{"title":"一种基于k均值聚类的深度图生成方法","authors":"Siming Meng, Hao Jiang","doi":"10.1109/ICDH.2012.79","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel depth map generation method. After a series of pre-treatment process, image quality capture and bilateral filtering, K-means clustering method has been used for classification of background and front objects. Then the depth map could be generated directly depend on the predeterminate model which is given a forehand, finally the correct depth map can be vividly created base on the layer Stratifying. The experiment result shows that the depth map directly represent the depth information and also earn good subjective evaluation.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Depth Map Generation Method Based on K-means Clustering\",\"authors\":\"Siming Meng, Hao Jiang\",\"doi\":\"10.1109/ICDH.2012.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel depth map generation method. After a series of pre-treatment process, image quality capture and bilateral filtering, K-means clustering method has been used for classification of background and front objects. Then the depth map could be generated directly depend on the predeterminate model which is given a forehand, finally the correct depth map can be vividly created base on the layer Stratifying. The experiment result shows that the depth map directly represent the depth information and also earn good subjective evaluation.\",\"PeriodicalId\":308799,\"journal\":{\"name\":\"2012 Fourth International Conference on Digital Home\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Digital Home\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2012.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的深度图生成方法。经过一系列预处理、图像质量捕获和双边滤波,采用K-means聚类方法对背景和正面目标进行分类。然后根据预先给出的模型直接生成深度图,最后在分层的基础上生动地生成正确的深度图。实验结果表明,深度图直接反映了深度信息,也获得了良好的主观评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Depth Map Generation Method Based on K-means Clustering
In this paper, we propose a novel depth map generation method. After a series of pre-treatment process, image quality capture and bilateral filtering, K-means clustering method has been used for classification of background and front objects. Then the depth map could be generated directly depend on the predeterminate model which is given a forehand, finally the correct depth map can be vividly created base on the layer Stratifying. The experiment result shows that the depth map directly represent the depth information and also earn good subjective evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信