使用监督机器学习技术的恒星物体分类

Deen Omat, Jood Otey, Amjed Al-mousa
{"title":"使用监督机器学习技术的恒星物体分类","authors":"Deen Omat, Jood Otey, Amjed Al-mousa","doi":"10.1109/ACIT57182.2022.9994215","DOIUrl":null,"url":null,"abstract":"Machine Learning is used in many fields of study. This paper used machine learning to classify instances from the Sloan Digital Sky Survey Data Release 17 (SDSS DR17) as a galaxy, quasar, or star. Supervised learning was used to make the classification. Multiple machine learning models were built, Decision Trees, K-Nearest Neighbors, Multinomial Logistic Classification, Multilayer Perceptron, Naïve Bayes Classifier, Support Vector Classification, Random Forest, and Soft Voting Classifier. Random Forest performed the best with 98% accuracy and correctly classified all instances labeled as stars in the dataset. The worst-performing algorithm was Naïve Bayes, with 91% accuracy.","PeriodicalId":256713,"journal":{"name":"2022 International Arab Conference on Information Technology (ACIT)","volume":"37 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stellar Objects Classification Using Supervised Machine Learning Techniques\",\"authors\":\"Deen Omat, Jood Otey, Amjed Al-mousa\",\"doi\":\"10.1109/ACIT57182.2022.9994215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning is used in many fields of study. This paper used machine learning to classify instances from the Sloan Digital Sky Survey Data Release 17 (SDSS DR17) as a galaxy, quasar, or star. Supervised learning was used to make the classification. Multiple machine learning models were built, Decision Trees, K-Nearest Neighbors, Multinomial Logistic Classification, Multilayer Perceptron, Naïve Bayes Classifier, Support Vector Classification, Random Forest, and Soft Voting Classifier. Random Forest performed the best with 98% accuracy and correctly classified all instances labeled as stars in the dataset. The worst-performing algorithm was Naïve Bayes, with 91% accuracy.\",\"PeriodicalId\":256713,\"journal\":{\"name\":\"2022 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"37 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT57182.2022.9994215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT57182.2022.9994215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习被用于许多研究领域。本文使用机器学习将来自斯隆数字巡天数据发布17 (SDSS DR17)的实例分类为星系、类星体或恒星。使用监督学习进行分类。建立了多个机器学习模型,决策树、k近邻、多项逻辑分类、多层感知器、Naïve贝叶斯分类器、支持向量分类器、随机森林和软投票分类器。Random Forest表现最好,准确率为98%,并正确分类了数据集中标记为星星的所有实例。表现最差的算法是Naïve Bayes,准确率为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stellar Objects Classification Using Supervised Machine Learning Techniques
Machine Learning is used in many fields of study. This paper used machine learning to classify instances from the Sloan Digital Sky Survey Data Release 17 (SDSS DR17) as a galaxy, quasar, or star. Supervised learning was used to make the classification. Multiple machine learning models were built, Decision Trees, K-Nearest Neighbors, Multinomial Logistic Classification, Multilayer Perceptron, Naïve Bayes Classifier, Support Vector Classification, Random Forest, and Soft Voting Classifier. Random Forest performed the best with 98% accuracy and correctly classified all instances labeled as stars in the dataset. The worst-performing algorithm was Naïve Bayes, with 91% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信