{"title":"利用mpsoc的异构性来防止潜在的特洛伊木马跨恶意ip传播","authors":"Chen Liu, Chengmo Yang","doi":"10.1145/2591513.2591595","DOIUrl":null,"url":null,"abstract":"Multiprocessor System-on-Chip (MPSoC) platforms face some of the most demanding security concerns, as they process, store, and communicate sensitive information using third-party intellectual property (3PIP) cores. The trend of outsourcing design and fabrication strongly questions the assumption of 3PIP components being trustworthy. While existing research focuses on addressing hardware trojans in individual IPs, this paper improves MPSoC security from another perspective. Specifically, our goal is to prevent trojans in malicious IPs from triggering each other and leading to severe system-wide degradation in security and reliability. We propose to impose trojan isolation constraints during static task scheduling, ensuring that all legal communications on the target MPSoC are between IPs of different types. This in turn enables the runtime system to monitor and detect undesired communication paths, if any. We furthermore pose the security-constrained MPSoC task scheduling as a multi-dimensional optimization problem, and solve it through Integer Linear Programming (ILP), thus minimizing the associated performance, power, and hardware overhead. The results show that trojan isolation can be achieved within one extra vendor and nearly no performance overhead.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploiting heterogeneity in MPSoCs to prevent potential trojan propagation across malicious IPs\",\"authors\":\"Chen Liu, Chengmo Yang\",\"doi\":\"10.1145/2591513.2591595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiprocessor System-on-Chip (MPSoC) platforms face some of the most demanding security concerns, as they process, store, and communicate sensitive information using third-party intellectual property (3PIP) cores. The trend of outsourcing design and fabrication strongly questions the assumption of 3PIP components being trustworthy. While existing research focuses on addressing hardware trojans in individual IPs, this paper improves MPSoC security from another perspective. Specifically, our goal is to prevent trojans in malicious IPs from triggering each other and leading to severe system-wide degradation in security and reliability. We propose to impose trojan isolation constraints during static task scheduling, ensuring that all legal communications on the target MPSoC are between IPs of different types. This in turn enables the runtime system to monitor and detect undesired communication paths, if any. We furthermore pose the security-constrained MPSoC task scheduling as a multi-dimensional optimization problem, and solve it through Integer Linear Programming (ILP), thus minimizing the associated performance, power, and hardware overhead. The results show that trojan isolation can be achieved within one extra vendor and nearly no performance overhead.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting heterogeneity in MPSoCs to prevent potential trojan propagation across malicious IPs
Multiprocessor System-on-Chip (MPSoC) platforms face some of the most demanding security concerns, as they process, store, and communicate sensitive information using third-party intellectual property (3PIP) cores. The trend of outsourcing design and fabrication strongly questions the assumption of 3PIP components being trustworthy. While existing research focuses on addressing hardware trojans in individual IPs, this paper improves MPSoC security from another perspective. Specifically, our goal is to prevent trojans in malicious IPs from triggering each other and leading to severe system-wide degradation in security and reliability. We propose to impose trojan isolation constraints during static task scheduling, ensuring that all legal communications on the target MPSoC are between IPs of different types. This in turn enables the runtime system to monitor and detect undesired communication paths, if any. We furthermore pose the security-constrained MPSoC task scheduling as a multi-dimensional optimization problem, and solve it through Integer Linear Programming (ILP), thus minimizing the associated performance, power, and hardware overhead. The results show that trojan isolation can be achieved within one extra vendor and nearly no performance overhead.