{"title":"时态图的网络内分类","authors":"C. Ryther, J. Simonsen","doi":"10.1109/ICDMW.2018.00041","DOIUrl":null,"url":null,"abstract":"Recent results indicate that static graph features might not be adequate to solve challenges in graphs involving a temporal dimension. We analyze several classification problems using already established temporal metrics, and we propose label-sensitive and recency-sensitive variants of these metrics that capture labeling information and additional temporal patterns in the data. We test all new and old metrics, and a baseline based on a standard disease-spreading model, using tuned off-the-shelf classifiers on 9 datasets of varying size and usage domain. Our experiments indicate that usage of label-and recency-sensitive metrics on real-world data provides more accurate results than static approaches and approaches based on temporal metrics alone.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Within-Network Classification in Temporal Graphs\",\"authors\":\"C. Ryther, J. Simonsen\",\"doi\":\"10.1109/ICDMW.2018.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent results indicate that static graph features might not be adequate to solve challenges in graphs involving a temporal dimension. We analyze several classification problems using already established temporal metrics, and we propose label-sensitive and recency-sensitive variants of these metrics that capture labeling information and additional temporal patterns in the data. We test all new and old metrics, and a baseline based on a standard disease-spreading model, using tuned off-the-shelf classifiers on 9 datasets of varying size and usage domain. Our experiments indicate that usage of label-and recency-sensitive metrics on real-world data provides more accurate results than static approaches and approaches based on temporal metrics alone.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"281 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent results indicate that static graph features might not be adequate to solve challenges in graphs involving a temporal dimension. We analyze several classification problems using already established temporal metrics, and we propose label-sensitive and recency-sensitive variants of these metrics that capture labeling information and additional temporal patterns in the data. We test all new and old metrics, and a baseline based on a standard disease-spreading model, using tuned off-the-shelf classifiers on 9 datasets of varying size and usage domain. Our experiments indicate that usage of label-and recency-sensitive metrics on real-world data provides more accurate results than static approaches and approaches based on temporal metrics alone.