Harry Dobbs, O. Batchelor, Richard D. Green, J. Atlas
{"title":"Smart-Tree:用于3D树骨架化的点云的神经内轴线逼近","authors":"Harry Dobbs, O. Batchelor, Richard D. Green, J. Atlas","doi":"10.48550/arXiv.2303.11560","DOIUrl":null,"url":null,"abstract":"This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset and source code are publicly available.","PeriodicalId":319553,"journal":{"name":"Iberian Conference on Pattern Recognition and Image Analysis","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization\",\"authors\":\"Harry Dobbs, O. Batchelor, Richard D. Green, J. Atlas\",\"doi\":\"10.48550/arXiv.2303.11560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset and source code are publicly available.\",\"PeriodicalId\":319553,\"journal\":{\"name\":\"Iberian Conference on Pattern Recognition and Image Analysis\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iberian Conference on Pattern Recognition and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.11560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iberian Conference on Pattern Recognition and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.11560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization
This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset and source code are publicly available.