论卷积神经网络组合在离线手写识别中的应用

Dewi Suryani, P. Doetsch, H. Ney
{"title":"论卷积神经网络组合在离线手写识别中的应用","authors":"Dewi Suryani, P. Doetsch, H. Ney","doi":"10.1109/ICFHR.2016.0046","DOIUrl":null,"url":null,"abstract":"In this paper, we elaborate the advantages of combining two neural network methodologies, convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent neural networks, with the framework of hybrid hidden Markov models (HMM) for recognizing offline handwriting text. CNNs employ shift-invariant filters to generate discriminative features within neural networks. We show that CNNs are powerful tools to extract general purpose features that even work well for unknown classes. We evaluate our system on a Chinese handwritten text database and provide a GPU-based implementation that can be used to reproduce the experiments. All experiments were conducted with RWTH OCR, an open-source system developed at our institute.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"On the Benefits of Convolutional Neural Network Combinations in Offline Handwriting Recognition\",\"authors\":\"Dewi Suryani, P. Doetsch, H. Ney\",\"doi\":\"10.1109/ICFHR.2016.0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we elaborate the advantages of combining two neural network methodologies, convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent neural networks, with the framework of hybrid hidden Markov models (HMM) for recognizing offline handwriting text. CNNs employ shift-invariant filters to generate discriminative features within neural networks. We show that CNNs are powerful tools to extract general purpose features that even work well for unknown classes. We evaluate our system on a Chinese handwritten text database and provide a GPU-based implementation that can be used to reproduce the experiments. All experiments were conducted with RWTH OCR, an open-source system developed at our institute.\",\"PeriodicalId\":194844,\"journal\":{\"name\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2016.0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文阐述了卷积神经网络(CNN)和长短期记忆(LSTM)递归神经网络这两种神经网络方法在混合隐马尔可夫模型(HMM)框架下用于离线手写文本识别的优势。cnn使用移位不变滤波器在神经网络中生成判别特征。我们表明,cnn是提取通用特征的强大工具,甚至可以很好地用于未知类。我们在一个中文手写文本数据库上评估了我们的系统,并提供了一个基于gpu的实现,可以用来重现实验。所有的实验都是用RWTH OCR进行的,这是一个由我们研究所开发的开源系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Benefits of Convolutional Neural Network Combinations in Offline Handwriting Recognition
In this paper, we elaborate the advantages of combining two neural network methodologies, convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent neural networks, with the framework of hybrid hidden Markov models (HMM) for recognizing offline handwriting text. CNNs employ shift-invariant filters to generate discriminative features within neural networks. We show that CNNs are powerful tools to extract general purpose features that even work well for unknown classes. We evaluate our system on a Chinese handwritten text database and provide a GPU-based implementation that can be used to reproduce the experiments. All experiments were conducted with RWTH OCR, an open-source system developed at our institute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信