基于语义关系分析的情感分析模型研究

T. K. Tran, T. Phan
{"title":"基于语义关系分析的情感分析模型研究","authors":"T. K. Tran, T. Phan","doi":"10.4018/IJSE.2018070104","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective model for aspect-based sentiment analysis. First, we combined a sentiment dictionary and syntactic dependency rules to extract reliable word pairs (sentiment — aspect). Then, thanks to ontology, we grouped those aspects and determined the sentiment polarity of each. When we conducted experiments on real reviews, the system showed positive results.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards a Sentiment Analysis Model Based on Semantic Relation Analysis\",\"authors\":\"T. K. Tran, T. Phan\",\"doi\":\"10.4018/IJSE.2018070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective model for aspect-based sentiment analysis. First, we combined a sentiment dictionary and syntactic dependency rules to extract reliable word pairs (sentiment — aspect). Then, thanks to ontology, we grouped those aspects and determined the sentiment polarity of each. When we conducted experiments on real reviews, the system showed positive results.\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSE.2018070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2018070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一个有效的基于方面的情感分析模型。首先,我们结合情感词典和句法依赖规则来提取可靠的词对(情感方面)。然后,借助本体,我们对这些方面进行分组,并确定每个方面的情感极性。当我们对真实的评论进行实验时,系统显示出积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Sentiment Analysis Model Based on Semantic Relation Analysis
In this paper, we propose an effective model for aspect-based sentiment analysis. First, we combined a sentiment dictionary and syntactic dependency rules to extract reliable word pairs (sentiment — aspect). Then, thanks to ontology, we grouped those aspects and determined the sentiment polarity of each. When we conducted experiments on real reviews, the system showed positive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信