改进基于k均值的水平攻击的智能聚类方法

Y. Varabei, I. Kabin, Z. Dyka, D. Klann, P. Langendörfer
{"title":"改进基于k均值的水平攻击的智能聚类方法","authors":"Y. Varabei, I. Kabin, Z. Dyka, D. Klann, P. Langendörfer","doi":"10.1109/PIMRCW.2019.8880831","DOIUrl":null,"url":null,"abstract":"Machine learning approaches have a high potential for improving the success rate of side channel analysis attacks. In this paper we present horizontal side channel analysis attacks against three crypto-implementations suffering from different levels of leakage using a single power and a single electromagnetic trace. We show the effectivity of attacks using $k-means$ as analysis tool. In addition we introduce a new approach that we call intelligent clustering that enables attackers to select the start centroids in such a way that the ability of $k-means$ to extract the key bits is increased up to 38.56 % compared to $k-means$ starting the farthest neighbors centroids and up to 66.66 % compared to the mean correctness for $k-means$ starting with random centroids.","PeriodicalId":158659,"journal":{"name":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent Clustering as a Means to Improve K-means Based Horizontal Attacks\",\"authors\":\"Y. Varabei, I. Kabin, Z. Dyka, D. Klann, P. Langendörfer\",\"doi\":\"10.1109/PIMRCW.2019.8880831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning approaches have a high potential for improving the success rate of side channel analysis attacks. In this paper we present horizontal side channel analysis attacks against three crypto-implementations suffering from different levels of leakage using a single power and a single electromagnetic trace. We show the effectivity of attacks using $k-means$ as analysis tool. In addition we introduce a new approach that we call intelligent clustering that enables attackers to select the start centroids in such a way that the ability of $k-means$ to extract the key bits is increased up to 38.56 % compared to $k-means$ starting the farthest neighbors centroids and up to 66.66 % compared to the mean correctness for $k-means$ starting with random centroids.\",\"PeriodicalId\":158659,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRCW.2019.8880831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRCW.2019.8880831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器学习方法在提高侧信道分析攻击的成功率方面具有很高的潜力。在本文中,我们提出了针对使用单个电源和单个电磁迹线遭受不同泄漏级别的三种加密实现的水平侧信道分析攻击。我们使用k-means作为分析工具来展示攻击的有效性。此外,我们引入了一种新的方法,我们称之为智能聚类,它使攻击者能够选择开始质心,从而使k-means提取密钥位的能力比从最远的邻居质心开始的k-means的能力提高38.56%,比从随机质心开始的k-means的平均准确性提高66.66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Clustering as a Means to Improve K-means Based Horizontal Attacks
Machine learning approaches have a high potential for improving the success rate of side channel analysis attacks. In this paper we present horizontal side channel analysis attacks against three crypto-implementations suffering from different levels of leakage using a single power and a single electromagnetic trace. We show the effectivity of attacks using $k-means$ as analysis tool. In addition we introduce a new approach that we call intelligent clustering that enables attackers to select the start centroids in such a way that the ability of $k-means$ to extract the key bits is increased up to 38.56 % compared to $k-means$ starting the farthest neighbors centroids and up to 66.66 % compared to the mean correctness for $k-means$ starting with random centroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信