{"title":"MEMS压电能量采集器的设计优化","authors":"D. Hoffmann, T. Bechtold, D. Hohlfeld","doi":"10.1109/EUROSIME.2016.7463403","DOIUrl":null,"url":null,"abstract":"This work presents an optimization strategy towards extending the operational frequency range of piezoelectric MEMS energy harvesting devices. We propose to use coupled micromechanical resonators to enable efficient energy harvesting at multiple frequencies with a single device. The proposed design, obtained by optimization algorithms, exhibits closely spaced eigenfrequencies with equal power delivery.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design optimization of MEMS piezoelectric energy harvester\",\"authors\":\"D. Hoffmann, T. Bechtold, D. Hohlfeld\",\"doi\":\"10.1109/EUROSIME.2016.7463403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an optimization strategy towards extending the operational frequency range of piezoelectric MEMS energy harvesting devices. We propose to use coupled micromechanical resonators to enable efficient energy harvesting at multiple frequencies with a single device. The proposed design, obtained by optimization algorithms, exhibits closely spaced eigenfrequencies with equal power delivery.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design optimization of MEMS piezoelectric energy harvester
This work presents an optimization strategy towards extending the operational frequency range of piezoelectric MEMS energy harvesting devices. We propose to use coupled micromechanical resonators to enable efficient energy harvesting at multiple frequencies with a single device. The proposed design, obtained by optimization algorithms, exhibits closely spaced eigenfrequencies with equal power delivery.