传感器测量的在线故障检测

F. Koushanfar, M. Potkonjak, A. Sangiovanni-Vincentelli
{"title":"传感器测量的在线故障检测","authors":"F. Koushanfar, M. Potkonjak, A. Sangiovanni-Vincentelli","doi":"10.1109/ICSENS.2003.1279088","DOIUrl":null,"url":null,"abstract":"On-line fault detection in sensor networks is of paramount importance due to the convergence of a variety of challenging technological, application, conceptual, and safety related factors. We introduce a taxonomy for classification of faults in sensor networks and the first on-line model-based testing technique. The approach is generic in the sense that it can be applied on an arbitrary system of heterogeneous sensors with an arbitrary type of fault model, while it provides a flexible tradeoff between accuracy and latency. The key idea is to formulate on-line testing as a set of instances of a non-linear function minimization and consequently apply nonparametric statistical methods to identify the sensors that have the highest probability to be faulty. The optimization is conducted using the Powell nonlinear function minimization method. The effectiveness of the approach is evaluated in the presence of random noise using a system of light sensors.","PeriodicalId":369277,"journal":{"name":"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"203","resultStr":"{\"title\":\"On-line fault detection of sensor measurements\",\"authors\":\"F. Koushanfar, M. Potkonjak, A. Sangiovanni-Vincentelli\",\"doi\":\"10.1109/ICSENS.2003.1279088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line fault detection in sensor networks is of paramount importance due to the convergence of a variety of challenging technological, application, conceptual, and safety related factors. We introduce a taxonomy for classification of faults in sensor networks and the first on-line model-based testing technique. The approach is generic in the sense that it can be applied on an arbitrary system of heterogeneous sensors with an arbitrary type of fault model, while it provides a flexible tradeoff between accuracy and latency. The key idea is to formulate on-line testing as a set of instances of a non-linear function minimization and consequently apply nonparametric statistical methods to identify the sensors that have the highest probability to be faulty. The optimization is conducted using the Powell nonlinear function minimization method. The effectiveness of the approach is evaluated in the presence of random noise using a system of light sensors.\",\"PeriodicalId\":369277,\"journal\":{\"name\":\"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"203\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2003.1279088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2003.1279088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 203

摘要

由于各种具有挑战性的技术、应用、概念和安全相关因素的融合,传感器网络中的在线故障检测至关重要。我们介绍了一种用于传感器网络故障分类的分类方法,并首次提出了基于模型的在线测试技术。该方法是通用的,因为它可以应用于具有任意类型故障模型的任意异构传感器系统,同时它在精度和延迟之间提供了灵活的权衡。关键思想是将在线测试表述为非线性函数最小化的一组实例,从而应用非参数统计方法来识别故障概率最高的传感器。采用Powell非线性函数最小化法进行优化。在随机噪声存在的情况下,使用光传感器系统评估了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line fault detection of sensor measurements
On-line fault detection in sensor networks is of paramount importance due to the convergence of a variety of challenging technological, application, conceptual, and safety related factors. We introduce a taxonomy for classification of faults in sensor networks and the first on-line model-based testing technique. The approach is generic in the sense that it can be applied on an arbitrary system of heterogeneous sensors with an arbitrary type of fault model, while it provides a flexible tradeoff between accuracy and latency. The key idea is to formulate on-line testing as a set of instances of a non-linear function minimization and consequently apply nonparametric statistical methods to identify the sensors that have the highest probability to be faulty. The optimization is conducted using the Powell nonlinear function minimization method. The effectiveness of the approach is evaluated in the presence of random noise using a system of light sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信