自测试电路的特征分析与测试调度

A. P. Stroele, H. Wunderlich
{"title":"自测试电路的特征分析与测试调度","authors":"A. P. Stroele, H. Wunderlich","doi":"10.1109/FTCS.1991.146640","DOIUrl":null,"url":null,"abstract":"In complex circuits the test execution is usually divided into a number of subtasks, each producing a signature in a self-test register. These signatures influence one another. A model that can be used as a basis for test scheduling procedures is presented, and it is shown how test schedules can be constructed, in order to minimize the number of signatures to be evaluated. The error masking probabilities decrease when the subtasks of the test execution are repeated in an appropriate order, and an equilibrium situation is reached where the error masking probabilities are minimal. A method is presented for constructing test schedules so that only the signatures at the primary outputs must be evaluated to get a sufficient fault coverage. Then no internal scan path is required, only a few signatures have to be evaluated at the end of the test execution, and the test control at chip and board level is simplified. The amount of hardware to implement a built-in self-test is reduced significantly.<<ETX>>","PeriodicalId":300397,"journal":{"name":"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Signature analysis and test scheduling for self-testable circuits\",\"authors\":\"A. P. Stroele, H. Wunderlich\",\"doi\":\"10.1109/FTCS.1991.146640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex circuits the test execution is usually divided into a number of subtasks, each producing a signature in a self-test register. These signatures influence one another. A model that can be used as a basis for test scheduling procedures is presented, and it is shown how test schedules can be constructed, in order to minimize the number of signatures to be evaluated. The error masking probabilities decrease when the subtasks of the test execution are repeated in an appropriate order, and an equilibrium situation is reached where the error masking probabilities are minimal. A method is presented for constructing test schedules so that only the signatures at the primary outputs must be evaluated to get a sufficient fault coverage. Then no internal scan path is required, only a few signatures have to be evaluated at the end of the test execution, and the test control at chip and board level is simplified. The amount of hardware to implement a built-in self-test is reduced significantly.<<ETX>>\",\"PeriodicalId\":300397,\"journal\":{\"name\":\"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1991.146640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1991.146640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在复杂的电路中,测试执行通常被分成许多子任务,每个子任务在自测寄存器中产生一个签名。这些签名相互影响。本文提出了一个可以作为测试调度过程基础的模型,并展示了如何构建测试调度,以最小化要评估的签名的数量。当测试执行的子任务以适当的顺序重复时,错误屏蔽概率减少,并且达到错误屏蔽概率最小的平衡情况。本文提出了一种构造测试计划的方法,以便仅对主要输出处的签名进行评估,以获得足够的故障覆盖。然后不需要内部扫描路径,只需要在测试执行结束时评估几个签名,并且简化了芯片和板级的测试控制。实现内置自检所需的硬件数量大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signature analysis and test scheduling for self-testable circuits
In complex circuits the test execution is usually divided into a number of subtasks, each producing a signature in a self-test register. These signatures influence one another. A model that can be used as a basis for test scheduling procedures is presented, and it is shown how test schedules can be constructed, in order to minimize the number of signatures to be evaluated. The error masking probabilities decrease when the subtasks of the test execution are repeated in an appropriate order, and an equilibrium situation is reached where the error masking probabilities are minimal. A method is presented for constructing test schedules so that only the signatures at the primary outputs must be evaluated to get a sufficient fault coverage. Then no internal scan path is required, only a few signatures have to be evaluated at the end of the test execution, and the test control at chip and board level is simplified. The amount of hardware to implement a built-in self-test is reduced significantly.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信