Jiawang Dan, Zhaowei Qu, Xiaoru Wang, Fu Li, Jiahang Gu, Bing Ma
{"title":"具有选择性分层残差网络的规模自适应轻量级超分辨率","authors":"Jiawang Dan, Zhaowei Qu, Xiaoru Wang, Fu Li, Jiahang Gu, Bing Ma","doi":"10.1145/3461353.3461376","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks have made remarkable achievements in single-image super-resolution tasks in recent years. However, current methods do not consider the characteristics of super-resolution that the adjacent areas carry similar information. In this paper, we propose a scale adaptive and lightweight super-resolution with a selective hierarchical residual network (SHRN), which utilizes the repeated texture features. Specifically, SHRN is stacked by several selective hierarchical residual blocks (SHRB). The SHRB mainly contains a hierarchical feature fusion structure (HFFS) and a selective feature fusion structure (SFFS). The HFFS uses multiple branches to obtain multiscale features due to the varying texture size of objects. The SFFS fuses features of adjacent branches to select effective information. Plenty of experiments demonstrate that our lightweight model achieves better performance against other methods by extracting scale adaptive features and utilizing the repeated texture structure.","PeriodicalId":114871,"journal":{"name":"Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale adaptive and lightweight super-resolution with a selective hierarchical residual network\",\"authors\":\"Jiawang Dan, Zhaowei Qu, Xiaoru Wang, Fu Li, Jiahang Gu, Bing Ma\",\"doi\":\"10.1145/3461353.3461376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks have made remarkable achievements in single-image super-resolution tasks in recent years. However, current methods do not consider the characteristics of super-resolution that the adjacent areas carry similar information. In this paper, we propose a scale adaptive and lightweight super-resolution with a selective hierarchical residual network (SHRN), which utilizes the repeated texture features. Specifically, SHRN is stacked by several selective hierarchical residual blocks (SHRB). The SHRB mainly contains a hierarchical feature fusion structure (HFFS) and a selective feature fusion structure (SFFS). The HFFS uses multiple branches to obtain multiscale features due to the varying texture size of objects. The SFFS fuses features of adjacent branches to select effective information. Plenty of experiments demonstrate that our lightweight model achieves better performance against other methods by extracting scale adaptive features and utilizing the repeated texture structure.\",\"PeriodicalId\":114871,\"journal\":{\"name\":\"Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461353.3461376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461353.3461376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scale adaptive and lightweight super-resolution with a selective hierarchical residual network
Deep convolutional neural networks have made remarkable achievements in single-image super-resolution tasks in recent years. However, current methods do not consider the characteristics of super-resolution that the adjacent areas carry similar information. In this paper, we propose a scale adaptive and lightweight super-resolution with a selective hierarchical residual network (SHRN), which utilizes the repeated texture features. Specifically, SHRN is stacked by several selective hierarchical residual blocks (SHRB). The SHRB mainly contains a hierarchical feature fusion structure (HFFS) and a selective feature fusion structure (SFFS). The HFFS uses multiple branches to obtain multiscale features due to the varying texture size of objects. The SFFS fuses features of adjacent branches to select effective information. Plenty of experiments demonstrate that our lightweight model achieves better performance against other methods by extracting scale adaptive features and utilizing the repeated texture structure.