信道非平稳跟踪的对称自适应预测结构

S. B. Jebara, M. Jaidane-Saidane
{"title":"信道非平稳跟踪的对称自适应预测结构","authors":"S. B. Jebara, M. Jaidane-Saidane","doi":"10.1109/DSPWS.1996.555531","DOIUrl":null,"url":null,"abstract":"The basic idea of this paper is related to the fact that the steady state property in a non-stationary system context is strongly related to the input correlation characteristics. When the LMS algorithm is used to identify a system with variations modeled by a random walk, the performance is degradated as the input correlation increases. The classical identification scheme can be improved by the use of a prewhitening adaptive filter. A theoretical analysis of an adaptive predictive identification scheme is presented. This study illustrates the contribution of predictive structures for tracking system non-stationarities.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Symmetric adaptive predictive structure for tracking channel non-stationarities\",\"authors\":\"S. B. Jebara, M. Jaidane-Saidane\",\"doi\":\"10.1109/DSPWS.1996.555531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic idea of this paper is related to the fact that the steady state property in a non-stationary system context is strongly related to the input correlation characteristics. When the LMS algorithm is used to identify a system with variations modeled by a random walk, the performance is degradated as the input correlation increases. The classical identification scheme can be improved by the use of a prewhitening adaptive filter. A theoretical analysis of an adaptive predictive identification scheme is presented. This study illustrates the contribution of predictive structures for tracking system non-stationarities.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的基本思想与非平稳系统的稳态特性与输入相关特性密切相关这一事实有关。当LMS算法用于识别由随机游走建模的变量系统时,性能随着输入相关性的增加而降低。通过使用预白化自适应滤波器,可以对经典的识别方案进行改进。对一种自适应预测识别方案进行了理论分析。本研究说明了预测结构对跟踪系统非平稳性的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric adaptive predictive structure for tracking channel non-stationarities
The basic idea of this paper is related to the fact that the steady state property in a non-stationary system context is strongly related to the input correlation characteristics. When the LMS algorithm is used to identify a system with variations modeled by a random walk, the performance is degradated as the input correlation increases. The classical identification scheme can be improved by the use of a prewhitening adaptive filter. A theoretical analysis of an adaptive predictive identification scheme is presented. This study illustrates the contribution of predictive structures for tracking system non-stationarities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信