用通用函数逼近神经网络估计传热系数

S. Szénási, I. Felde, G. Nagy, A. Deus
{"title":"用通用函数逼近神经网络估计传热系数","authors":"S. Szénási, I. Felde, G. Nagy, A. Deus","doi":"10.1109/SACI.2018.8440928","DOIUrl":null,"url":null,"abstract":"Abhstract-The appropriate knowledge of the Heat Transfer Coefficient (HTC) is required for the efficient design of heat treatment operations. There are several inverse heat transfer calculation methods to determine this quantity, but these are usually based on heuristics search algorithms and require high computation demands. This paper presents a solution to this problem with special usage of Artificial Neural Networks (ANN), the universal function approximator. After the time-consuming training process, this network is capable of giving prompt estimations about the nature of the HTC function sought. This estimation would be a useful input for additional fine-tuning algorithms.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating the Heat Transfer Coefficient Using Universal Function Approximator Neural Network\",\"authors\":\"S. Szénási, I. Felde, G. Nagy, A. Deus\",\"doi\":\"10.1109/SACI.2018.8440928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abhstract-The appropriate knowledge of the Heat Transfer Coefficient (HTC) is required for the efficient design of heat treatment operations. There are several inverse heat transfer calculation methods to determine this quantity, but these are usually based on heuristics search algorithms and require high computation demands. This paper presents a solution to this problem with special usage of Artificial Neural Networks (ANN), the universal function approximator. After the time-consuming training process, this network is capable of giving prompt estimations about the nature of the HTC function sought. This estimation would be a useful input for additional fine-tuning algorithms.\",\"PeriodicalId\":126087,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2018.8440928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:热处理操作的有效设计需要适当的传热系数(HTC)的知识。有几种反传热计算方法可以确定该量,但这些方法通常基于启发式搜索算法,计算量大。本文利用通用函数逼近器人工神经网络(Artificial Neural Networks, ANN)来解决这一问题。经过耗时的训练过程,该网络能够对所寻求的HTC函数的性质给出及时的估计。这个估计将是额外微调算法的有用输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Heat Transfer Coefficient Using Universal Function Approximator Neural Network
Abhstract-The appropriate knowledge of the Heat Transfer Coefficient (HTC) is required for the efficient design of heat treatment operations. There are several inverse heat transfer calculation methods to determine this quantity, but these are usually based on heuristics search algorithms and require high computation demands. This paper presents a solution to this problem with special usage of Artificial Neural Networks (ANN), the universal function approximator. After the time-consuming training process, this network is capable of giving prompt estimations about the nature of the HTC function sought. This estimation would be a useful input for additional fine-tuning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信