面向生命周期的机械设备低碳制造:方法与应用

Haihong Huang, Xiang Zou, Lei Li, Wei Xiong, Lei Gan, Zhifeng Liu
{"title":"面向生命周期的机械设备低碳制造:方法与应用","authors":"Haihong Huang, Xiang Zou, Lei Li, Wei Xiong, Lei Gan, Zhifeng Liu","doi":"10.20517/gmo.2022.07","DOIUrl":null,"url":null,"abstract":"Mechanical equipment is a significant contributor to carbon emissions. By analyzing the life cycle carbon emissions of mechanical equipment, it can be obtained that the consumption of materials and energy are the key factors. Focusing on decreasing material and energy consumption in the life cycle of mechanical equipment, a series of low carbon design strategies are proposed, including material selection, lightweight design, and design for disassembly and recycling; specifically, in this paper, low carbon operation strategies on the machine and workshop levels are discussed. Operations including power matching, energy recovery, and transmission chain shortening can be performed at the machine level, as well as scheduling and production optimization at the workshop level. The proposed method is applied to a piece of typical equipment, a hydraulic forming press, and results show that the proposed low carbon manufacturing methods have significant carbon emission reduction potential. Combined with current research hotspots, the integration of design methods and tools and the carbon emission reduction techniques enabled by intelligent manufacturing are future directions.","PeriodicalId":178988,"journal":{"name":"Green Manufacturing Open","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Life cycle oriented low carbon manufacturing of mechanical equipment: method and application\",\"authors\":\"Haihong Huang, Xiang Zou, Lei Li, Wei Xiong, Lei Gan, Zhifeng Liu\",\"doi\":\"10.20517/gmo.2022.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical equipment is a significant contributor to carbon emissions. By analyzing the life cycle carbon emissions of mechanical equipment, it can be obtained that the consumption of materials and energy are the key factors. Focusing on decreasing material and energy consumption in the life cycle of mechanical equipment, a series of low carbon design strategies are proposed, including material selection, lightweight design, and design for disassembly and recycling; specifically, in this paper, low carbon operation strategies on the machine and workshop levels are discussed. Operations including power matching, energy recovery, and transmission chain shortening can be performed at the machine level, as well as scheduling and production optimization at the workshop level. The proposed method is applied to a piece of typical equipment, a hydraulic forming press, and results show that the proposed low carbon manufacturing methods have significant carbon emission reduction potential. Combined with current research hotspots, the integration of design methods and tools and the carbon emission reduction techniques enabled by intelligent manufacturing are future directions.\",\"PeriodicalId\":178988,\"journal\":{\"name\":\"Green Manufacturing Open\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Manufacturing Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/gmo.2022.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Manufacturing Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/gmo.2022.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机械设备是碳排放的重要来源。通过对机械设备全生命周期碳排放的分析,可以得出材料消耗和能源消耗是影响机械设备全生命周期碳排放的关键因素。围绕降低机械设备生命周期内的材料和能源消耗,提出了一系列低碳设计策略,包括材料选择、轻量化设计、拆装回收设计;具体而言,本文从机器和车间两个层面探讨了低碳运营策略。功率匹配、能量回收、传动链缩短等操作可以在机器层面进行,也可以在车间层面进行调度和生产优化。将该方法应用于典型设备液压机,结果表明,该方法具有显著的碳减排潜力。结合当前的研究热点,智能制造带来的设计方法和工具的融合以及碳减排技术是未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life cycle oriented low carbon manufacturing of mechanical equipment: method and application
Mechanical equipment is a significant contributor to carbon emissions. By analyzing the life cycle carbon emissions of mechanical equipment, it can be obtained that the consumption of materials and energy are the key factors. Focusing on decreasing material and energy consumption in the life cycle of mechanical equipment, a series of low carbon design strategies are proposed, including material selection, lightweight design, and design for disassembly and recycling; specifically, in this paper, low carbon operation strategies on the machine and workshop levels are discussed. Operations including power matching, energy recovery, and transmission chain shortening can be performed at the machine level, as well as scheduling and production optimization at the workshop level. The proposed method is applied to a piece of typical equipment, a hydraulic forming press, and results show that the proposed low carbon manufacturing methods have significant carbon emission reduction potential. Combined with current research hotspots, the integration of design methods and tools and the carbon emission reduction techniques enabled by intelligent manufacturing are future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信