计数层次结构中的时空权衡

E. Allender, M. Koucký, Detlef Ronneburger, Sambuddha Roy, V. Vinay
{"title":"计数层次结构中的时空权衡","authors":"E. Allender, M. Koucký, Detlef Ronneburger, Sambuddha Roy, V. Vinay","doi":"10.1109/CCC.2001.933896","DOIUrl":null,"url":null,"abstract":"Extends the lower-bound techniques of L. Fortnow (2000) to the unbounded-error probabilistic model. A key step in the argument is a generalization of V.A. Nepomnjas/spl caron/c/spl caron/ii/spl breve/'s (1970) theorem from the Boolean setting to the arithmetic setting. This generalization is made possible due to the recent discovery of logspace-uniform TC/sup 0/ circuits for iterated multiplication (A. Chiu et al., 2000). As an example of the sort of lower bounds that we obtain, we show that MAJ-MAJSAT is not contained in PrTiSp(n/sup 1+o(1)/, n/sup /spl epsiv//) for any /spl epsiv/<1. We also extend one of Fortnow's lower bounds, from showing that S~A~T~ does not have uniform NC/sup 1/ circuits of size n/sup 1+o(1)/, to a similar result for SAC/sup 1/ circuits.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Time-space tradeoffs in the counting hierarchy\",\"authors\":\"E. Allender, M. Koucký, Detlef Ronneburger, Sambuddha Roy, V. Vinay\",\"doi\":\"10.1109/CCC.2001.933896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extends the lower-bound techniques of L. Fortnow (2000) to the unbounded-error probabilistic model. A key step in the argument is a generalization of V.A. Nepomnjas/spl caron/c/spl caron/ii/spl breve/'s (1970) theorem from the Boolean setting to the arithmetic setting. This generalization is made possible due to the recent discovery of logspace-uniform TC/sup 0/ circuits for iterated multiplication (A. Chiu et al., 2000). As an example of the sort of lower bounds that we obtain, we show that MAJ-MAJSAT is not contained in PrTiSp(n/sup 1+o(1)/, n/sup /spl epsiv//) for any /spl epsiv/<1. We also extend one of Fortnow's lower bounds, from showing that S~A~T~ does not have uniform NC/sup 1/ circuits of size n/sup 1+o(1)/, to a similar result for SAC/sup 1/ circuits.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

将L. Fortnow(2000)的下界技术扩展到无界误差概率模型。论证的关键一步是将V.A. Nepomnjas/spl caron/c/spl caron/ii/spl breve/ s(1970)定理从布尔集合推广到算术集合。由于最近发现了用于迭代乘法的对数空间统一TC/sup /电路,这种推广成为可能(A. Chiu et al., 2000)。作为我们得到的下界的一个例子,我们证明了对于任何/spl epsiv/<1,在PrTiSp(n/sup 1+o(1)/, n/sup /spl epsiv//)中不包含majsat - majsat。我们还扩展了Fortnow的下界之一,从表明S~A~T~不存在大小为n/sup 1+o(1)/的统一NC/sup 1/电路,到SAC/sup 1/电路的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-space tradeoffs in the counting hierarchy
Extends the lower-bound techniques of L. Fortnow (2000) to the unbounded-error probabilistic model. A key step in the argument is a generalization of V.A. Nepomnjas/spl caron/c/spl caron/ii/spl breve/'s (1970) theorem from the Boolean setting to the arithmetic setting. This generalization is made possible due to the recent discovery of logspace-uniform TC/sup 0/ circuits for iterated multiplication (A. Chiu et al., 2000). As an example of the sort of lower bounds that we obtain, we show that MAJ-MAJSAT is not contained in PrTiSp(n/sup 1+o(1)/, n/sup /spl epsiv//) for any /spl epsiv/<1. We also extend one of Fortnow's lower bounds, from showing that S~A~T~ does not have uniform NC/sup 1/ circuits of size n/sup 1+o(1)/, to a similar result for SAC/sup 1/ circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信