{"title":"大单相负荷低压应用的电压不平衡缓解技术","authors":"S. Negri, G. Superti-Furga, E. Tironi","doi":"10.1109/ICHQP53011.2022.9808832","DOIUrl":null,"url":null,"abstract":"In this paper a voltage unbalance mitigation technique for low-voltage microgrids or feeders in presence of large single-phase loads is introduced. In order to take maximum advantage of the existing hardware, the proposed solution consists of a sequence-based decentralized voltage control to be embedded in three-phase VSC connecting distributed generation to the considered system. Furthermore, a centralized controller is proposed to define optimal negative and zero sequence voltage reference. Control effectiveness is numerically verified considering a low-voltage feeder case study.","PeriodicalId":249133,"journal":{"name":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","volume":"1373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Voltage Unbalance Mitigation Technique for Low-voltage Applications with Large Single-phase Loads\",\"authors\":\"S. Negri, G. Superti-Furga, E. Tironi\",\"doi\":\"10.1109/ICHQP53011.2022.9808832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a voltage unbalance mitigation technique for low-voltage microgrids or feeders in presence of large single-phase loads is introduced. In order to take maximum advantage of the existing hardware, the proposed solution consists of a sequence-based decentralized voltage control to be embedded in three-phase VSC connecting distributed generation to the considered system. Furthermore, a centralized controller is proposed to define optimal negative and zero sequence voltage reference. Control effectiveness is numerically verified considering a low-voltage feeder case study.\",\"PeriodicalId\":249133,\"journal\":{\"name\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"volume\":\"1373 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP53011.2022.9808832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP53011.2022.9808832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Voltage Unbalance Mitigation Technique for Low-voltage Applications with Large Single-phase Loads
In this paper a voltage unbalance mitigation technique for low-voltage microgrids or feeders in presence of large single-phase loads is introduced. In order to take maximum advantage of the existing hardware, the proposed solution consists of a sequence-based decentralized voltage control to be embedded in three-phase VSC connecting distributed generation to the considered system. Furthermore, a centralized controller is proposed to define optimal negative and zero sequence voltage reference. Control effectiveness is numerically verified considering a low-voltage feeder case study.