一种基于受激退火的混合聚类算法

Chen-dong Zha, Yinan Dou, Minjie Guo, Yuewu Dong
{"title":"一种基于受激退火的混合聚类算法","authors":"Chen-dong Zha, Yinan Dou, Minjie Guo, Yuewu Dong","doi":"10.1109/IHMSC.2013.30","DOIUrl":null,"url":null,"abstract":"In the recent years, more and more researches are preferred to focus on network user behavior. Usually, k-means clustering and Agglomerative Nesting (AGNES) are respectively chosen to analyze the network user behavior. But both the two kinds of algorithm have some disadvantages inherently. A kind of hybrid clustering algorithm (ASAKM) is proposed in this paper, which takes the advantages of both kinds of clustering algorithms. Furthermore, the idea of simulated annealing is also adopted in this paper, to implement the global optimal solution while the partitioning methods usually only reach the local optimal minimum. Experiments indicate that, with this new hybrid algorithm, the clustering results can be more accurate.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Hybrid Clustering Algorithm Based on Stimulated Annealing\",\"authors\":\"Chen-dong Zha, Yinan Dou, Minjie Guo, Yuewu Dong\",\"doi\":\"10.1109/IHMSC.2013.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent years, more and more researches are preferred to focus on network user behavior. Usually, k-means clustering and Agglomerative Nesting (AGNES) are respectively chosen to analyze the network user behavior. But both the two kinds of algorithm have some disadvantages inherently. A kind of hybrid clustering algorithm (ASAKM) is proposed in this paper, which takes the advantages of both kinds of clustering algorithms. Furthermore, the idea of simulated annealing is also adopted in this paper, to implement the global optimal solution while the partitioning methods usually only reach the local optimal minimum. Experiments indicate that, with this new hybrid algorithm, the clustering results can be more accurate.\",\"PeriodicalId\":222375,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2013.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,越来越多的研究倾向于关注网络用户行为。通常选择k-means聚类和Agglomerative nested (AGNES)来分析网络用户行为。但这两种算法都有其固有的缺点。本文提出了一种混合聚类算法(ASAKM),它综合了这两种聚类算法的优点。此外,本文还采用了模拟退火的思想来实现全局最优解,而分区方法通常只能达到局部最优解。实验表明,该混合算法的聚类结果更加准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Hybrid Clustering Algorithm Based on Stimulated Annealing
In the recent years, more and more researches are preferred to focus on network user behavior. Usually, k-means clustering and Agglomerative Nesting (AGNES) are respectively chosen to analyze the network user behavior. But both the two kinds of algorithm have some disadvantages inherently. A kind of hybrid clustering algorithm (ASAKM) is proposed in this paper, which takes the advantages of both kinds of clustering algorithms. Furthermore, the idea of simulated annealing is also adopted in this paper, to implement the global optimal solution while the partitioning methods usually only reach the local optimal minimum. Experiments indicate that, with this new hybrid algorithm, the clustering results can be more accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信