大体积粉煤灰混凝土路面的水化和携气挑战

Aniruddha Baral, J. Roesler
{"title":"大体积粉煤灰混凝土路面的水化和携气挑战","authors":"Aniruddha Baral, J. Roesler","doi":"10.33593/d0owmqk5","DOIUrl":null,"url":null,"abstract":"The goal of high-volume fly ash concrete (HVFAC) is to produce concrete pavements at a lower cost and carbon footprint while maintaining its desired durability. Previous research has demonstrated that the required fresh and hardened concrete properties can be achieved at higher replacement rates of cement with fly ash such as 40%. However, most transportation agencies do not permit more than 30% cement replacement with fly ash primarily because of the potential inconsistencies in early-age properties such as variable air entrainment, delays in setting times, and lower strength gains. In this paper, the heat evolved during hydration of HVFAC are presented with respect to the source of the cement and fly ash, the variability of fly ash from the same source, and addition of nano limestone. Isothermal calorimetry showed longer setting times were dependent on the specific fly ash-cement combination as well as the degree of sulfate imbalance. For this study, HVFAC mixes with class C fly ash had a larger sulfate imbalance than class F fly ash with final setting times 4.5 hours and 1.9 hours longer than straight cement system, respectively. Replacing cement with 10% nano limestone in HVFAC system accelerated the initial set time by 3.2 hours which was much greater than the set time acceleration (1.3 hours) with the replacement of straight cement with 10% nano limestone. The various types of inorganic and organic carbons in fly ash remain a challenge for predicting and maintaining air content but the foam index still offers a rapid and straightforward quality control test with operator variability within ±1 µL AEA/gm fly ash.","PeriodicalId":265129,"journal":{"name":"Proceedings of the 12th International Conference on Concrete Pavements","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydration and Air Entrainment Challenges of High-Volume Fly Ash Concrete Pavement\",\"authors\":\"Aniruddha Baral, J. Roesler\",\"doi\":\"10.33593/d0owmqk5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of high-volume fly ash concrete (HVFAC) is to produce concrete pavements at a lower cost and carbon footprint while maintaining its desired durability. Previous research has demonstrated that the required fresh and hardened concrete properties can be achieved at higher replacement rates of cement with fly ash such as 40%. However, most transportation agencies do not permit more than 30% cement replacement with fly ash primarily because of the potential inconsistencies in early-age properties such as variable air entrainment, delays in setting times, and lower strength gains. In this paper, the heat evolved during hydration of HVFAC are presented with respect to the source of the cement and fly ash, the variability of fly ash from the same source, and addition of nano limestone. Isothermal calorimetry showed longer setting times were dependent on the specific fly ash-cement combination as well as the degree of sulfate imbalance. For this study, HVFAC mixes with class C fly ash had a larger sulfate imbalance than class F fly ash with final setting times 4.5 hours and 1.9 hours longer than straight cement system, respectively. Replacing cement with 10% nano limestone in HVFAC system accelerated the initial set time by 3.2 hours which was much greater than the set time acceleration (1.3 hours) with the replacement of straight cement with 10% nano limestone. The various types of inorganic and organic carbons in fly ash remain a challenge for predicting and maintaining air content but the foam index still offers a rapid and straightforward quality control test with operator variability within ±1 µL AEA/gm fly ash.\",\"PeriodicalId\":265129,\"journal\":{\"name\":\"Proceedings of the 12th International Conference on Concrete Pavements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Conference on Concrete Pavements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33593/d0owmqk5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Concrete Pavements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33593/d0owmqk5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高容量粉煤灰混凝土(HVFAC)的目标是以更低的成本和碳足迹生产混凝土路面,同时保持其所需的耐久性。先前的研究表明,在更高的粉煤灰替代率(如40%)下,可以实现所需的新硬化混凝土性能。然而,大多数运输机构不允许超过30%的水泥替换为粉煤灰,主要是因为早期性能的潜在不一致,如空气夹带变化、凝结时间延迟和强度增益降低。本文从水泥和粉煤灰的来源、同一来源的粉煤灰的变异性、纳米石灰石的加入等方面介绍了HVFAC水化过程中的热演化。等温量热法表明,较长的凝结时间取决于具体的粉煤灰-水泥组合以及硫酸盐不平衡的程度。本研究中,含C类粉煤灰的HVFAC体系比含F类粉煤灰的HVFAC体系硫酸盐失衡更大,终凝时间分别比直水泥体系长4.5 h和1.9 h。在HVFAC体系中,用10%纳米石灰石替代水泥可使初始凝结时间加快3.2 h,大大大于用10%纳米石灰石替代直水泥时的凝结时间加速(1.3 h)。粉煤灰中各种类型的无机和有机碳对于预测和维持空气含量仍然是一个挑战,但泡沫指数仍然提供了一个快速和直接的质量控制测试,操作人员在±1µL AEA/gm粉煤灰范围内变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydration and Air Entrainment Challenges of High-Volume Fly Ash Concrete Pavement
The goal of high-volume fly ash concrete (HVFAC) is to produce concrete pavements at a lower cost and carbon footprint while maintaining its desired durability. Previous research has demonstrated that the required fresh and hardened concrete properties can be achieved at higher replacement rates of cement with fly ash such as 40%. However, most transportation agencies do not permit more than 30% cement replacement with fly ash primarily because of the potential inconsistencies in early-age properties such as variable air entrainment, delays in setting times, and lower strength gains. In this paper, the heat evolved during hydration of HVFAC are presented with respect to the source of the cement and fly ash, the variability of fly ash from the same source, and addition of nano limestone. Isothermal calorimetry showed longer setting times were dependent on the specific fly ash-cement combination as well as the degree of sulfate imbalance. For this study, HVFAC mixes with class C fly ash had a larger sulfate imbalance than class F fly ash with final setting times 4.5 hours and 1.9 hours longer than straight cement system, respectively. Replacing cement with 10% nano limestone in HVFAC system accelerated the initial set time by 3.2 hours which was much greater than the set time acceleration (1.3 hours) with the replacement of straight cement with 10% nano limestone. The various types of inorganic and organic carbons in fly ash remain a challenge for predicting and maintaining air content but the foam index still offers a rapid and straightforward quality control test with operator variability within ±1 µL AEA/gm fly ash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信