Liangkai Liu, Ren Zhong, Aaron Willcock, N. Fisher, Weisong Shi
{"title":"节能自主移动机器人的开放方法","authors":"Liangkai Liu, Ren Zhong, Aaron Willcock, N. Fisher, Weisong Shi","doi":"10.1109/ICRA48891.2023.10161110","DOIUrl":null,"url":null,"abstract":"Autonomous mobile robots (AMRs) have the capability to execute a wide range of tasks with minimal human intervention. However, one of the major limitations of AMRs is their limited battery life, which often results in interruptions to their task execution and the need to reach the nearest charging station. Optimizing energy consumption in AMRs has become a critical challenge in their deployment. Through empirical studies on real AMRs, we have identified a lack of coordination between computation and control as a major source of energy inefficiency. In this paper, we propose a comprehensive energy prediction model that provides real-time energy consumption for each component of the AMR. Additionally, we propose three path models to address the obstacle avoidance problem for AMRs. To evaluate the performance of our energy prediction and path models, we have developed a customized AMR called Donkey, which has the capability for fine-grained (millisecond-level) end-to-end power profiling. Our energy prediction model demonstrated an accuracy of over 90% in our evaluations. Finally, we applied our energy prediction model to obstacle avoidance and guided energy-efficient path selection, resulting in up to a 44.8% reduction in energy consumption compared to the baseline.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Open Approach to Energy-Efficient Autonomous Mobile Robots\",\"authors\":\"Liangkai Liu, Ren Zhong, Aaron Willcock, N. Fisher, Weisong Shi\",\"doi\":\"10.1109/ICRA48891.2023.10161110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous mobile robots (AMRs) have the capability to execute a wide range of tasks with minimal human intervention. However, one of the major limitations of AMRs is their limited battery life, which often results in interruptions to their task execution and the need to reach the nearest charging station. Optimizing energy consumption in AMRs has become a critical challenge in their deployment. Through empirical studies on real AMRs, we have identified a lack of coordination between computation and control as a major source of energy inefficiency. In this paper, we propose a comprehensive energy prediction model that provides real-time energy consumption for each component of the AMR. Additionally, we propose three path models to address the obstacle avoidance problem for AMRs. To evaluate the performance of our energy prediction and path models, we have developed a customized AMR called Donkey, which has the capability for fine-grained (millisecond-level) end-to-end power profiling. Our energy prediction model demonstrated an accuracy of over 90% in our evaluations. Finally, we applied our energy prediction model to obstacle avoidance and guided energy-efficient path selection, resulting in up to a 44.8% reduction in energy consumption compared to the baseline.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10161110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Open Approach to Energy-Efficient Autonomous Mobile Robots
Autonomous mobile robots (AMRs) have the capability to execute a wide range of tasks with minimal human intervention. However, one of the major limitations of AMRs is their limited battery life, which often results in interruptions to their task execution and the need to reach the nearest charging station. Optimizing energy consumption in AMRs has become a critical challenge in their deployment. Through empirical studies on real AMRs, we have identified a lack of coordination between computation and control as a major source of energy inefficiency. In this paper, we propose a comprehensive energy prediction model that provides real-time energy consumption for each component of the AMR. Additionally, we propose three path models to address the obstacle avoidance problem for AMRs. To evaluate the performance of our energy prediction and path models, we have developed a customized AMR called Donkey, which has the capability for fine-grained (millisecond-level) end-to-end power profiling. Our energy prediction model demonstrated an accuracy of over 90% in our evaluations. Finally, we applied our energy prediction model to obstacle avoidance and guided energy-efficient path selection, resulting in up to a 44.8% reduction in energy consumption compared to the baseline.