BPP的伪随机oracle表征

J. H. Lutz
{"title":"BPP的伪随机oracle表征","authors":"J. H. Lutz","doi":"10.1109/SCT.1991.160261","DOIUrl":null,"url":null,"abstract":"It is known from work of C.H. Bennett and J. Gill (1981) and K. Ambos-Spies (1986) that the following conditions are equivalent: (i) L in BPP; (ii); for almost all oracles A, l in P/sup A/. It is shown here that the following conditions are also equivalent to (i) and (ii): (iii) the set of oracles A for which L in P/sup A/ has pspace-measure 1; (iv) for every pspace-random oracle A, L in P/sup A/. It follows from this characterization that almost every A in DSPACE (2/sup poly/) is polynomial-time hard for BPP. Succinctly, the main content of the proof is that pseudorandom generators exist relative to every pseudorandom oracle.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A pseudorandom oracle characterization of BPP\",\"authors\":\"J. H. Lutz\",\"doi\":\"10.1109/SCT.1991.160261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known from work of C.H. Bennett and J. Gill (1981) and K. Ambos-Spies (1986) that the following conditions are equivalent: (i) L in BPP; (ii); for almost all oracles A, l in P/sup A/. It is shown here that the following conditions are also equivalent to (i) and (ii): (iii) the set of oracles A for which L in P/sup A/ has pspace-measure 1; (iv) for every pspace-random oracle A, L in P/sup A/. It follows from this characterization that almost every A in DSPACE (2/sup poly/) is polynomial-time hard for BPP. Succinctly, the main content of the proof is that pseudorandom generators exist relative to every pseudorandom oracle.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

C.H. Bennett和J. Gill(1981)和K. Ambos-Spies(1986)的研究表明,以下条件是等价的:(i)在BPP中为L;(二);对于几乎所有的神谕A, l在P/sup A/。这里证明了下列条件也等价于(i)和(ii):(iii) P/sup A/中的L具有P空间测度1的神谕集合A;(iv)对于P/sup A/中的每个pspace-random oracle A, L。从这个特征可以得出,DSPACE (2/sup poly/)中的几乎每个A对于BPP来说都是多项式时间困难的。简而言之,证明的主要内容是相对于每个伪随机预言存在伪随机生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pseudorandom oracle characterization of BPP
It is known from work of C.H. Bennett and J. Gill (1981) and K. Ambos-Spies (1986) that the following conditions are equivalent: (i) L in BPP; (ii); for almost all oracles A, l in P/sup A/. It is shown here that the following conditions are also equivalent to (i) and (ii): (iii) the set of oracles A for which L in P/sup A/ has pspace-measure 1; (iv) for every pspace-random oracle A, L in P/sup A/. It follows from this characterization that almost every A in DSPACE (2/sup poly/) is polynomial-time hard for BPP. Succinctly, the main content of the proof is that pseudorandom generators exist relative to every pseudorandom oracle.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信