利用基于主题的对抗神经网络进行跨域关键词提取

Yanan Wang, Qi Liu, Chuan Qin, Tong Xu, Yijun Wang, Enhong Chen, Hui Xiong
{"title":"利用基于主题的对抗神经网络进行跨域关键词提取","authors":"Yanan Wang, Qi Liu, Chuan Qin, Tong Xu, Yijun Wang, Enhong Chen, Hui Xiong","doi":"10.1109/ICDM.2018.00075","DOIUrl":null,"url":null,"abstract":"Keyphrases have been widely used in large document collections for providing a concise summary of document content. While significant efforts have been made on the task of automatic keyphrase extraction, existing methods have challenges in training a robust supervised model when there are insufficient labeled data in the resource-poor domains. To this end, in this paper, we propose a novel Topic-based Adversarial Neural Network (TANN) method, which aims at exploiting the unlabeled data in the target domain and the data in the resource-rich source domain. Specifically, we first explicitly incorporate the global topic information into the document representation using a topic correlation layer. Then, domain-invariant features are learned to allow the efficient transfer from the source domain to the target by utilizing adversarial training on the topic-based representation. Meanwhile, to balance the adversarial training and preserve the domain-private features in the target domain, we reconstruct the target data from both forward and backward directions. Finally, based on the learned features, keyphrase are extracted using a tagging method. Experiments on two realworld cross-domain scenarios demonstrate that our method can significantly improve the performance of keyphrase extraction on unlabeled or insufficiently labeled target domain.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Exploiting Topic-Based Adversarial Neural Network for Cross-Domain Keyphrase Extraction\",\"authors\":\"Yanan Wang, Qi Liu, Chuan Qin, Tong Xu, Yijun Wang, Enhong Chen, Hui Xiong\",\"doi\":\"10.1109/ICDM.2018.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keyphrases have been widely used in large document collections for providing a concise summary of document content. While significant efforts have been made on the task of automatic keyphrase extraction, existing methods have challenges in training a robust supervised model when there are insufficient labeled data in the resource-poor domains. To this end, in this paper, we propose a novel Topic-based Adversarial Neural Network (TANN) method, which aims at exploiting the unlabeled data in the target domain and the data in the resource-rich source domain. Specifically, we first explicitly incorporate the global topic information into the document representation using a topic correlation layer. Then, domain-invariant features are learned to allow the efficient transfer from the source domain to the target by utilizing adversarial training on the topic-based representation. Meanwhile, to balance the adversarial training and preserve the domain-private features in the target domain, we reconstruct the target data from both forward and backward directions. Finally, based on the learned features, keyphrase are extracted using a tagging method. Experiments on two realworld cross-domain scenarios demonstrate that our method can significantly improve the performance of keyphrase extraction on unlabeled or insufficiently labeled target domain.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

关键字已广泛用于大型文档集合中,以提供文档内容的简明摘要。虽然在关键词自动提取方面已经做出了很大的努力,但当资源贫乏的领域中标记数据不足时,现有的方法在训练鲁棒监督模型方面存在挑战。为此,本文提出了一种新的基于topic的对抗神经网络(TANN)方法,该方法旨在利用目标域中的未标记数据和资源丰富的源域中的数据。具体来说,我们首先使用主题相关层显式地将全局主题信息合并到文档表示中。然后,通过对基于主题的表示进行对抗性训练,学习域不变特征,从而实现从源域到目标域的有效转移。同时,为了平衡对抗性训练和保留目标域的域私有特征,我们从前向和后向重构目标数据。最后,基于学习到的特征,使用标注方法提取关键词。实验结果表明,该方法可以显著提高未标记或标记不足目标域的关键词提取性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Topic-Based Adversarial Neural Network for Cross-Domain Keyphrase Extraction
Keyphrases have been widely used in large document collections for providing a concise summary of document content. While significant efforts have been made on the task of automatic keyphrase extraction, existing methods have challenges in training a robust supervised model when there are insufficient labeled data in the resource-poor domains. To this end, in this paper, we propose a novel Topic-based Adversarial Neural Network (TANN) method, which aims at exploiting the unlabeled data in the target domain and the data in the resource-rich source domain. Specifically, we first explicitly incorporate the global topic information into the document representation using a topic correlation layer. Then, domain-invariant features are learned to allow the efficient transfer from the source domain to the target by utilizing adversarial training on the topic-based representation. Meanwhile, to balance the adversarial training and preserve the domain-private features in the target domain, we reconstruct the target data from both forward and backward directions. Finally, based on the learned features, keyphrase are extracted using a tagging method. Experiments on two realworld cross-domain scenarios demonstrate that our method can significantly improve the performance of keyphrase extraction on unlabeled or insufficiently labeled target domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信