计算机视觉元学习中的参数调优

F. Mohammadi, M. Amini, H. Arabnia
{"title":"计算机视觉元学习中的参数调优","authors":"F. Mohammadi, M. Amini, H. Arabnia","doi":"10.1109/CSCI49370.2019.00060","DOIUrl":null,"url":null,"abstract":"Learning to learn plays a pivotal role in meta-learning (MTL) to obtain an optimal learning model. In this paper, we investigate image recognition for unseen categories of a given dataset with limited training information. We deploy a zero-shot learning (ZSL) algorithm to achieve this goal. We also explore the effect of parameter tuning on performance of semantic auto-encoder (SAE). We further address the parameter tuning problem for meta-learning, especially focusing on zero-shot learning. By combining different embedded parameters, we improved the accuracy of tuned-SAE. Advantages and disadvantages of parameter tuning and its application in image classification are also explored.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On Parameter Tuning in Meta-Learning for Computer Vision\",\"authors\":\"F. Mohammadi, M. Amini, H. Arabnia\",\"doi\":\"10.1109/CSCI49370.2019.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to learn plays a pivotal role in meta-learning (MTL) to obtain an optimal learning model. In this paper, we investigate image recognition for unseen categories of a given dataset with limited training information. We deploy a zero-shot learning (ZSL) algorithm to achieve this goal. We also explore the effect of parameter tuning on performance of semantic auto-encoder (SAE). We further address the parameter tuning problem for meta-learning, especially focusing on zero-shot learning. By combining different embedded parameters, we improved the accuracy of tuned-SAE. Advantages and disadvantages of parameter tuning and its application in image classification are also explored.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

学习如何学习在元学习(MTL)中起着至关重要的作用,以获得最优的学习模型。在本文中,我们研究了在有限的训练信息下对给定数据集的未见类别的图像识别。我们部署了零射击学习(ZSL)算法来实现这一目标。我们还探讨了参数调优对语义自编码器(SAE)性能的影响。我们进一步解决了元学习的参数调优问题,特别是关注零采样学习。通过组合不同的嵌入参数,提高了调谐sae的精度。探讨了参数整定的优缺点及其在图像分类中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Parameter Tuning in Meta-Learning for Computer Vision
Learning to learn plays a pivotal role in meta-learning (MTL) to obtain an optimal learning model. In this paper, we investigate image recognition for unseen categories of a given dataset with limited training information. We deploy a zero-shot learning (ZSL) algorithm to achieve this goal. We also explore the effect of parameter tuning on performance of semantic auto-encoder (SAE). We further address the parameter tuning problem for meta-learning, especially focusing on zero-shot learning. By combining different embedded parameters, we improved the accuracy of tuned-SAE. Advantages and disadvantages of parameter tuning and its application in image classification are also explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信