{"title":"P-ETL:基于MapReduce范式的并行etl","authors":"M. Bala, Omar Boussaïd, Z. Alimazighi","doi":"10.1109/AICCSA.2014.7073177","DOIUrl":null,"url":null,"abstract":"Big data is an opportunity in the emergence of novel business applications such as “Big Data Analytics” (BDA). However, these data with non-traditional volumes create a real problem given the capacity constraints of traditional systems. The aim of this paper is to deal with the impact of big data in a decision-support environment and more particularly in the data integration phase. In this context, we developed a platform, called P-ETL (Parallel-ETL) for extracting (E), transforming (T) and loading (L) very large data in a data warehouse (DW). To cope with very large data, ETL processes under our P-ETL platform run on a cluster of computers in parallel way with MapReduce paradigm. The conducted experiment shows mainly that increasing tasks dealing with large data speeds-up the ETL process.","PeriodicalId":412749,"journal":{"name":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"P-ETL: Parallel-ETL based on the MapReduce paradigm\",\"authors\":\"M. Bala, Omar Boussaïd, Z. Alimazighi\",\"doi\":\"10.1109/AICCSA.2014.7073177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data is an opportunity in the emergence of novel business applications such as “Big Data Analytics” (BDA). However, these data with non-traditional volumes create a real problem given the capacity constraints of traditional systems. The aim of this paper is to deal with the impact of big data in a decision-support environment and more particularly in the data integration phase. In this context, we developed a platform, called P-ETL (Parallel-ETL) for extracting (E), transforming (T) and loading (L) very large data in a data warehouse (DW). To cope with very large data, ETL processes under our P-ETL platform run on a cluster of computers in parallel way with MapReduce paradigm. The conducted experiment shows mainly that increasing tasks dealing with large data speeds-up the ETL process.\",\"PeriodicalId\":412749,\"journal\":{\"name\":\"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2014.7073177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2014.7073177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
P-ETL: Parallel-ETL based on the MapReduce paradigm
Big data is an opportunity in the emergence of novel business applications such as “Big Data Analytics” (BDA). However, these data with non-traditional volumes create a real problem given the capacity constraints of traditional systems. The aim of this paper is to deal with the impact of big data in a decision-support environment and more particularly in the data integration phase. In this context, we developed a platform, called P-ETL (Parallel-ETL) for extracting (E), transforming (T) and loading (L) very large data in a data warehouse (DW). To cope with very large data, ETL processes under our P-ETL platform run on a cluster of computers in parallel way with MapReduce paradigm. The conducted experiment shows mainly that increasing tasks dealing with large data speeds-up the ETL process.