P-ETL:基于MapReduce范式的并行etl

M. Bala, Omar Boussaïd, Z. Alimazighi
{"title":"P-ETL:基于MapReduce范式的并行etl","authors":"M. Bala, Omar Boussaïd, Z. Alimazighi","doi":"10.1109/AICCSA.2014.7073177","DOIUrl":null,"url":null,"abstract":"Big data is an opportunity in the emergence of novel business applications such as “Big Data Analytics” (BDA). However, these data with non-traditional volumes create a real problem given the capacity constraints of traditional systems. The aim of this paper is to deal with the impact of big data in a decision-support environment and more particularly in the data integration phase. In this context, we developed a platform, called P-ETL (Parallel-ETL) for extracting (E), transforming (T) and loading (L) very large data in a data warehouse (DW). To cope with very large data, ETL processes under our P-ETL platform run on a cluster of computers in parallel way with MapReduce paradigm. The conducted experiment shows mainly that increasing tasks dealing with large data speeds-up the ETL process.","PeriodicalId":412749,"journal":{"name":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"P-ETL: Parallel-ETL based on the MapReduce paradigm\",\"authors\":\"M. Bala, Omar Boussaïd, Z. Alimazighi\",\"doi\":\"10.1109/AICCSA.2014.7073177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data is an opportunity in the emergence of novel business applications such as “Big Data Analytics” (BDA). However, these data with non-traditional volumes create a real problem given the capacity constraints of traditional systems. The aim of this paper is to deal with the impact of big data in a decision-support environment and more particularly in the data integration phase. In this context, we developed a platform, called P-ETL (Parallel-ETL) for extracting (E), transforming (T) and loading (L) very large data in a data warehouse (DW). To cope with very large data, ETL processes under our P-ETL platform run on a cluster of computers in parallel way with MapReduce paradigm. The conducted experiment shows mainly that increasing tasks dealing with large data speeds-up the ETL process.\",\"PeriodicalId\":412749,\"journal\":{\"name\":\"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2014.7073177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2014.7073177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

随着“大数据分析”(BDA)等新型商业应用的出现,大数据是一个机遇。然而,考虑到传统系统的容量限制,这些非传统容量的数据产生了一个真正的问题。本文的目的是处理大数据在决策支持环境中的影响,特别是在数据集成阶段。在这种情况下,我们开发了一个名为P-ETL (Parallel-ETL)的平台,用于在数据仓库(DW)中提取(E)、转换(T)和加载(L)非常大的数据。为了处理非常大的数据,我们的P-ETL平台下的ETL进程以MapReduce范式并行的方式运行在计算机集群上。实验主要表明,增加处理大数据的任务可以加快ETL的进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P-ETL: Parallel-ETL based on the MapReduce paradigm
Big data is an opportunity in the emergence of novel business applications such as “Big Data Analytics” (BDA). However, these data with non-traditional volumes create a real problem given the capacity constraints of traditional systems. The aim of this paper is to deal with the impact of big data in a decision-support environment and more particularly in the data integration phase. In this context, we developed a platform, called P-ETL (Parallel-ETL) for extracting (E), transforming (T) and loading (L) very large data in a data warehouse (DW). To cope with very large data, ETL processes under our P-ETL platform run on a cluster of computers in parallel way with MapReduce paradigm. The conducted experiment shows mainly that increasing tasks dealing with large data speeds-up the ETL process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信