罗马乌尔都语文本网络欺凌威胁自动检测计算语言资源的开发

Amirita Dewani, M. Memon, Sania Bhatti
{"title":"罗马乌尔都语文本网络欺凌威胁自动检测计算语言资源的开发","authors":"Amirita Dewani, M. Memon, Sania Bhatti","doi":"10.17993/3ctic.2021.102.101-121","DOIUrl":null,"url":null,"abstract":"Automatic Cyberbullying detection has remained very challenging task since social media content and conversations are usually posted in unstructured free-text form leaving behind the language norms. The major concern and gap in formulating cyberbullying detection strategies is scarcity of available linguistic resources typically for newly evolved languages. Roman Urdu has recently emerged and hence is a resource poor language. Urdu has been widely known as the national language of Pakistan. However, because of socio-cultural and multilingual aspects, Roman Urdu is used widely on the Internet by Asians and more specifically Pakistanis. To fulfil the above stated gap, this research work presents guidelines for data annotation process and developed two linguistic resources: (i) Annotated corpus in Roman Urdu Language for cyberaggression and offensive language detection. The process of data annotation involved bilingual annotators instead of crowdsourcing. It has the benefit of correctly annotating instances that constitute clear cases of cyberbullying without compromising data quality. The developed corpus is highly balanced (with almost negligible skew) unlike most of the existing corpuses even in mature languages. (ii) Processing textual information for NLP tasks involves Stop-word elimination as a sub phase. Stop words carry least semantic information and increase feature space as compared to the other tokens and index terms in corpora. We have developed domain specific stop words for Roman Urdu Language considering all the lexical variants and typically in the context of aggression detection and collected data. The work has been carried out using python programming language and Pycharm IDE.","PeriodicalId":237333,"journal":{"name":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Development of computational linguistic resources for automated detection of textual cyberbullying threats in Roman Urdu language\",\"authors\":\"Amirita Dewani, M. Memon, Sania Bhatti\",\"doi\":\"10.17993/3ctic.2021.102.101-121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Cyberbullying detection has remained very challenging task since social media content and conversations are usually posted in unstructured free-text form leaving behind the language norms. The major concern and gap in formulating cyberbullying detection strategies is scarcity of available linguistic resources typically for newly evolved languages. Roman Urdu has recently emerged and hence is a resource poor language. Urdu has been widely known as the national language of Pakistan. However, because of socio-cultural and multilingual aspects, Roman Urdu is used widely on the Internet by Asians and more specifically Pakistanis. To fulfil the above stated gap, this research work presents guidelines for data annotation process and developed two linguistic resources: (i) Annotated corpus in Roman Urdu Language for cyberaggression and offensive language detection. The process of data annotation involved bilingual annotators instead of crowdsourcing. It has the benefit of correctly annotating instances that constitute clear cases of cyberbullying without compromising data quality. The developed corpus is highly balanced (with almost negligible skew) unlike most of the existing corpuses even in mature languages. (ii) Processing textual information for NLP tasks involves Stop-word elimination as a sub phase. Stop words carry least semantic information and increase feature space as compared to the other tokens and index terms in corpora. We have developed domain specific stop words for Roman Urdu Language considering all the lexical variants and typically in the context of aggression detection and collected data. The work has been carried out using python programming language and Pycharm IDE.\",\"PeriodicalId\":237333,\"journal\":{\"name\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctic.2021.102.101-121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2021.102.101-121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of computational linguistic resources for automated detection of textual cyberbullying threats in Roman Urdu language
Automatic Cyberbullying detection has remained very challenging task since social media content and conversations are usually posted in unstructured free-text form leaving behind the language norms. The major concern and gap in formulating cyberbullying detection strategies is scarcity of available linguistic resources typically for newly evolved languages. Roman Urdu has recently emerged and hence is a resource poor language. Urdu has been widely known as the national language of Pakistan. However, because of socio-cultural and multilingual aspects, Roman Urdu is used widely on the Internet by Asians and more specifically Pakistanis. To fulfil the above stated gap, this research work presents guidelines for data annotation process and developed two linguistic resources: (i) Annotated corpus in Roman Urdu Language for cyberaggression and offensive language detection. The process of data annotation involved bilingual annotators instead of crowdsourcing. It has the benefit of correctly annotating instances that constitute clear cases of cyberbullying without compromising data quality. The developed corpus is highly balanced (with almost negligible skew) unlike most of the existing corpuses even in mature languages. (ii) Processing textual information for NLP tasks involves Stop-word elimination as a sub phase. Stop words carry least semantic information and increase feature space as compared to the other tokens and index terms in corpora. We have developed domain specific stop words for Roman Urdu Language considering all the lexical variants and typically in the context of aggression detection and collected data. The work has been carried out using python programming language and Pycharm IDE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信