基于法向的三角形网格曲率张量估计

H. Theisel, Christian Rössl, Rhaleb Zayer, H. Seidel
{"title":"基于法向的三角形网格曲率张量估计","authors":"H. Theisel, Christian Rössl, Rhaleb Zayer, H. Seidel","doi":"10.1109/PCCGA.2004.1348359","DOIUrl":null,"url":null,"abstract":"We introduce a new technique for estimating the curvature tensor of a triangular mesh. The input of the algorithm is only a single triangle equipped with its (exact or estimated) vertex normals. This way we get a smooth junction of the curvature tensor inside each triangle of the mesh. We show that the error of the new method is comparable with the error of a cubic fitting approach if the incorporated normals are estimated. If the exact normals of the underlying surface are available at the vertices, the error drops significantly. We demonstrate the applicability of the new estimation at a rather complex data set.","PeriodicalId":264796,"journal":{"name":"12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Normal based estimation of the curvature tensor for triangular meshes\",\"authors\":\"H. Theisel, Christian Rössl, Rhaleb Zayer, H. Seidel\",\"doi\":\"10.1109/PCCGA.2004.1348359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new technique for estimating the curvature tensor of a triangular mesh. The input of the algorithm is only a single triangle equipped with its (exact or estimated) vertex normals. This way we get a smooth junction of the curvature tensor inside each triangle of the mesh. We show that the error of the new method is comparable with the error of a cubic fitting approach if the incorporated normals are estimated. If the exact normals of the underlying surface are available at the vertices, the error drops significantly. We demonstrate the applicability of the new estimation at a rather complex data set.\",\"PeriodicalId\":264796,\"journal\":{\"name\":\"12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCGA.2004.1348359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCGA.2004.1348359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

介绍了一种估算三角形网格曲率张量的新方法。该算法的输入仅是一个具有(精确的或估计的)顶点法线的单个三角形。这样我们就得到了网格中每个三角形内曲率张量的光滑结。我们表明,如果对合并的正态线进行估计,新方法的误差与三次拟合方法的误差相当。如果下垫面在顶点处有准确的法线,则误差会显著降低。我们证明了新估计在相当复杂的数据集上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal based estimation of the curvature tensor for triangular meshes
We introduce a new technique for estimating the curvature tensor of a triangular mesh. The input of the algorithm is only a single triangle equipped with its (exact or estimated) vertex normals. This way we get a smooth junction of the curvature tensor inside each triangle of the mesh. We show that the error of the new method is comparable with the error of a cubic fitting approach if the incorporated normals are estimated. If the exact normals of the underlying surface are available at the vertices, the error drops significantly. We demonstrate the applicability of the new estimation at a rather complex data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信