Pablo Bermejo, L. D. L. Ossa, J. A. Gamez, J. M. Puerta
{"title":"高维数据库中不同后向特征选择准则的研究","authors":"Pablo Bermejo, L. D. L. Ossa, J. A. Gamez, J. M. Puerta","doi":"10.1109/ISDA.2011.6121839","DOIUrl":null,"url":null,"abstract":"Feature subset selection has become an expensive process due to the relatively recent appearance of high-dimensional databases. Thus, not only the need has arisen for reducing the dimensionality of these datasets, but also for doing it in an efficient way. We propose a new backward search, where attributes are removed given several smart criteria found in the literature and, besides, it is guided using a heuristic which reduces the cost and needed number of evaluations commonly expected from a backward search. Besides, we do not only propose the design of a new forward-backward algorithm but we also provide an experimental study of different criteria to decide the removal of attributes. The result is a very competitive algorithm which does not exceed the in-practice linear complexity while obtaining selected subsets of features with lower cardinality than other state-of-the-art algorithms.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study on different backward feature selection criteria over high-dimensional databases\",\"authors\":\"Pablo Bermejo, L. D. L. Ossa, J. A. Gamez, J. M. Puerta\",\"doi\":\"10.1109/ISDA.2011.6121839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature subset selection has become an expensive process due to the relatively recent appearance of high-dimensional databases. Thus, not only the need has arisen for reducing the dimensionality of these datasets, but also for doing it in an efficient way. We propose a new backward search, where attributes are removed given several smart criteria found in the literature and, besides, it is guided using a heuristic which reduces the cost and needed number of evaluations commonly expected from a backward search. Besides, we do not only propose the design of a new forward-backward algorithm but we also provide an experimental study of different criteria to decide the removal of attributes. The result is a very competitive algorithm which does not exceed the in-practice linear complexity while obtaining selected subsets of features with lower cardinality than other state-of-the-art algorithms.\",\"PeriodicalId\":433207,\"journal\":{\"name\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2011.6121839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on different backward feature selection criteria over high-dimensional databases
Feature subset selection has become an expensive process due to the relatively recent appearance of high-dimensional databases. Thus, not only the need has arisen for reducing the dimensionality of these datasets, but also for doing it in an efficient way. We propose a new backward search, where attributes are removed given several smart criteria found in the literature and, besides, it is guided using a heuristic which reduces the cost and needed number of evaluations commonly expected from a backward search. Besides, we do not only propose the design of a new forward-backward algorithm but we also provide an experimental study of different criteria to decide the removal of attributes. The result is a very competitive algorithm which does not exceed the in-practice linear complexity while obtaining selected subsets of features with lower cardinality than other state-of-the-art algorithms.