{"title":"静电转导面剪切模式硅MEMS微谐振器","authors":"A. T. Lin, Jize Yan, A. Seshia","doi":"10.1109/FREQ.2010.5556271","DOIUrl":null,"url":null,"abstract":"Silicon microresonators are increasingly viewed as attractive candidates for a variety of frequency selective signal processing applications due to miniaturization and potential for integration with CMOS. In this work, we present a new electrostatically transduced face-shear (FS) mode square plate single crystal silicon resonator that rivals previously reported bulk mode resonator topologies and demonstrates good frequency scaling. A microfabricated face-shear mode resonator with 800 µm side length demonstrates a resonant frequency of 3.638 MHz, Q of 11193 in air and 836283 in vacuum as well as a TCF of −19ppm/K.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Electrostatically transduced face-shear mode silicon MEMS microresonator\",\"authors\":\"A. T. Lin, Jize Yan, A. Seshia\",\"doi\":\"10.1109/FREQ.2010.5556271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon microresonators are increasingly viewed as attractive candidates for a variety of frequency selective signal processing applications due to miniaturization and potential for integration with CMOS. In this work, we present a new electrostatically transduced face-shear (FS) mode square plate single crystal silicon resonator that rivals previously reported bulk mode resonator topologies and demonstrates good frequency scaling. A microfabricated face-shear mode resonator with 800 µm side length demonstrates a resonant frequency of 3.638 MHz, Q of 11193 in air and 836283 in vacuum as well as a TCF of −19ppm/K.\",\"PeriodicalId\":344989,\"journal\":{\"name\":\"2010 IEEE International Frequency Control Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2010.5556271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon microresonators are increasingly viewed as attractive candidates for a variety of frequency selective signal processing applications due to miniaturization and potential for integration with CMOS. In this work, we present a new electrostatically transduced face-shear (FS) mode square plate single crystal silicon resonator that rivals previously reported bulk mode resonator topologies and demonstrates good frequency scaling. A microfabricated face-shear mode resonator with 800 µm side length demonstrates a resonant frequency of 3.638 MHz, Q of 11193 in air and 836283 in vacuum as well as a TCF of −19ppm/K.