静态场的无界轴对称有限元公式

R. R. A. Coelho, J. Cardoso
{"title":"静态场的无界轴对称有限元公式","authors":"R. R. A. Coelho, J. Cardoso","doi":"10.1109/compumag55718.2022.9827524","DOIUrl":null,"url":null,"abstract":"This paper describes an unbounded approach for solving the Poisson equation by the Finite Element Method (FEM). With domain mapping, it is unnecessary to truncate the domain at an arbitrary distance, where the potential is assumed negligible. The formulation herein has applications for static fields, has a simple implementation, and can handle infinite heterogeneous domains, which is a limitation of several FEM software. Such an approach raises the simulation precision and can save computational resources.","PeriodicalId":430005,"journal":{"name":"2022 23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded Axisymmetric FEM Formulation for Static Fields\",\"authors\":\"R. R. A. Coelho, J. Cardoso\",\"doi\":\"10.1109/compumag55718.2022.9827524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an unbounded approach for solving the Poisson equation by the Finite Element Method (FEM). With domain mapping, it is unnecessary to truncate the domain at an arbitrary distance, where the potential is assumed negligible. The formulation herein has applications for static fields, has a simple implementation, and can handle infinite heterogeneous domains, which is a limitation of several FEM software. Such an approach raises the simulation precision and can save computational resources.\",\"PeriodicalId\":430005,\"journal\":{\"name\":\"2022 23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/compumag55718.2022.9827524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/compumag55718.2022.9827524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了用有限元法求解泊松方程的一种无界方法。使用域映射,不需要在任意距离截断域,假设势可以忽略不计。本文的公式适用于静态场,实现简单,可以处理无限的异构域,这是一些有限元软件的局限性。这种方法提高了仿真精度,节约了计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded Axisymmetric FEM Formulation for Static Fields
This paper describes an unbounded approach for solving the Poisson equation by the Finite Element Method (FEM). With domain mapping, it is unnecessary to truncate the domain at an arbitrary distance, where the potential is assumed negligible. The formulation herein has applications for static fields, has a simple implementation, and can handle infinite heterogeneous domains, which is a limitation of several FEM software. Such an approach raises the simulation precision and can save computational resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信