一维装箱问题的一种有效逼近格式

N. Karmarkar, R. Karp
{"title":"一维装箱问题的一种有效逼近格式","authors":"N. Karmarkar, R. Karp","doi":"10.1109/SFCS.1982.61","DOIUrl":null,"url":null,"abstract":"We present several polynomial-time approximation algorithms for the one-dimensional bin-packing problem. using a subroutine to solve a certain linear programming relaxation of the problem. Our main results are as follows: There is a polynomial-time algorithm A such that A(I) ≤ OPT(I) + O(log2 OPT(I)). There is a polynomial-time algorithm A such that, if m(I) denotes the number of distinct sizes of pieces occurring in instance I, then A(I) ≤ OPT(I) + O(log2 m(I)). There is an approximation scheme which accepts as input an instance I and a positive real number ε, and produces as output a packing using as most (1 + ε) OPT(I) + O(ε-2) bins. Its execution time is O(ε-c n log n), where c is a constant. These are the best asymptotic performance bounds that have been achieved to date for polynomial-time bin-packing. Each of our algorithms makes at most O(log n) calls on the LP relaxation subroutine and takes at most O(n log n) time for other operations. The LP relaxation of bin packing was solved efficiently in practice by Gilmore and Gomory. We prove its membership in P, despite the fact that it has an astronomically large number of variables.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"489","resultStr":"{\"title\":\"An efficient approximation scheme for the one-dimensional bin-packing problem\",\"authors\":\"N. Karmarkar, R. Karp\",\"doi\":\"10.1109/SFCS.1982.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present several polynomial-time approximation algorithms for the one-dimensional bin-packing problem. using a subroutine to solve a certain linear programming relaxation of the problem. Our main results are as follows: There is a polynomial-time algorithm A such that A(I) ≤ OPT(I) + O(log2 OPT(I)). There is a polynomial-time algorithm A such that, if m(I) denotes the number of distinct sizes of pieces occurring in instance I, then A(I) ≤ OPT(I) + O(log2 m(I)). There is an approximation scheme which accepts as input an instance I and a positive real number ε, and produces as output a packing using as most (1 + ε) OPT(I) + O(ε-2) bins. Its execution time is O(ε-c n log n), where c is a constant. These are the best asymptotic performance bounds that have been achieved to date for polynomial-time bin-packing. Each of our algorithms makes at most O(log n) calls on the LP relaxation subroutine and takes at most O(n log n) time for other operations. The LP relaxation of bin packing was solved efficiently in practice by Gilmore and Gomory. We prove its membership in P, despite the fact that it has an astronomically large number of variables.\",\"PeriodicalId\":127919,\"journal\":{\"name\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"489\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1982.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1982.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 489

摘要

针对一维装箱问题,提出了几种多项式时间逼近算法。用子程序解决了某线性规划松弛的问题。我们的主要结果如下:存在一个多项式时间算法a,使得a (I)≤OPT(I) + O(log2 OPT(I))。存在一个多项式时间算法a,如果m(I)表示实例I中出现的不同大小的块的数量,则a (I)≤OPT(I) + O(log2 m(I))。有一个近似方案,它接受一个实例I和一个正实数ε作为输入,并产生一个使用最多(1 + ε) OPT(I) + O(ε-2)个箱子的打包作为输出。它的执行时间是O(ε-c n log n)这里c是常数。这些是迄今为止已经实现的多项式时间装箱的最佳渐近性能界。我们的每个算法对LP松弛子程序的调用最多为O(log n),对其他操作的调用最多为O(n log n)。Gilmore和Gomory在实践中有效地解决了装箱的LP松弛问题。我们证明了它属于P,尽管它有大量的变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient approximation scheme for the one-dimensional bin-packing problem
We present several polynomial-time approximation algorithms for the one-dimensional bin-packing problem. using a subroutine to solve a certain linear programming relaxation of the problem. Our main results are as follows: There is a polynomial-time algorithm A such that A(I) ≤ OPT(I) + O(log2 OPT(I)). There is a polynomial-time algorithm A such that, if m(I) denotes the number of distinct sizes of pieces occurring in instance I, then A(I) ≤ OPT(I) + O(log2 m(I)). There is an approximation scheme which accepts as input an instance I and a positive real number ε, and produces as output a packing using as most (1 + ε) OPT(I) + O(ε-2) bins. Its execution time is O(ε-c n log n), where c is a constant. These are the best asymptotic performance bounds that have been achieved to date for polynomial-time bin-packing. Each of our algorithms makes at most O(log n) calls on the LP relaxation subroutine and takes at most O(n log n) time for other operations. The LP relaxation of bin packing was solved efficiently in practice by Gilmore and Gomory. We prove its membership in P, despite the fact that it has an astronomically large number of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信