量子神经网络与神经网络在信号识别中的对比

Xin-Yi Tsai, Yu-Ju Chen, Huang-Chu Huang, Shang-Jen Chuang, R. Hwang
{"title":"量子神经网络与神经网络在信号识别中的对比","authors":"Xin-Yi Tsai, Yu-Ju Chen, Huang-Chu Huang, Shang-Jen Chuang, R. Hwang","doi":"10.1109/ICITA.2005.228","DOIUrl":null,"url":null,"abstract":"In this paper, the signal recognition by using quantum neural network (QNN) is studied and simulated. The signals with fuzziness distributed in the boundary of two different types of signals could be effectively recognized due to the structure of QNN's hidden units. To demonstrate the capability of QNN in recognition, the signals in a two-dimension (NC2) non-convex system is simulated. All the experiments are also performed by using the traditional neural network (NN) for a comparison.","PeriodicalId":371528,"journal":{"name":"Third International Conference on Information Technology and Applications (ICITA'05)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Quantum NN vs. NN in signal recognition\",\"authors\":\"Xin-Yi Tsai, Yu-Ju Chen, Huang-Chu Huang, Shang-Jen Chuang, R. Hwang\",\"doi\":\"10.1109/ICITA.2005.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the signal recognition by using quantum neural network (QNN) is studied and simulated. The signals with fuzziness distributed in the boundary of two different types of signals could be effectively recognized due to the structure of QNN's hidden units. To demonstrate the capability of QNN in recognition, the signals in a two-dimension (NC2) non-convex system is simulated. All the experiments are also performed by using the traditional neural network (NN) for a comparison.\",\"PeriodicalId\":371528,\"journal\":{\"name\":\"Third International Conference on Information Technology and Applications (ICITA'05)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Information Technology and Applications (ICITA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITA.2005.228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Information Technology and Applications (ICITA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITA.2005.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文对利用量子神经网络(QNN)进行信号识别进行了研究和仿真。由于QNN隐含单元的结构,使得分布在两种不同类型信号边界上的模糊信号能够被有效识别。为了验证QNN的识别能力,对二维(NC2)非凸系统中的信号进行了仿真。并与传统神经网络(NN)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum NN vs. NN in signal recognition
In this paper, the signal recognition by using quantum neural network (QNN) is studied and simulated. The signals with fuzziness distributed in the boundary of two different types of signals could be effectively recognized due to the structure of QNN's hidden units. To demonstrate the capability of QNN in recognition, the signals in a two-dimension (NC2) non-convex system is simulated. All the experiments are also performed by using the traditional neural network (NN) for a comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信