实现精确延迟合成

L. Amarù, Mathias Soeken, P. Vuillod, Jiong Luo, A. Mishchenko, P. Gaillardon, Janet Olson, R. Brayton, G. Micheli
{"title":"实现精确延迟合成","authors":"L. Amarù, Mathias Soeken, P. Vuillod, Jiong Luo, A. Mishchenko, P. Gaillardon, Janet Olson, R. Brayton, G. Micheli","doi":"10.1109/ICCAD.2017.8203799","DOIUrl":null,"url":null,"abstract":"Given (i) a Boolean function, (ii) a set of arrival times at the inputs, and (iii) a gate library with associated delay values, the exact delay synthesis problem asks for a circuit implementation which minimizes the arrival time at the output(s). The exact delay synthesis problem, with given input arrival times, relates to computing the communication complexity of a Boolean function, which is an intractable problem. Input arrival times are variable and can take any value, thereby making the exact delay synthesis search space infinite. This paper presents theory and algorithms for exact delay synthesis. We introduce the theory of equioptimizable arrival times, which allows us to partition all arrival time patterns into a finite set of equivalence classes. Thanks to this new theory, we create for the first time exact delay circuit databases covering all Boolean functions up to 5 variables and all possible arrival time patterns. We describe further arrival time compression techniques which enable the creation of larger databases. We propose an enhanced delay synthesis flow capable of dealing with large circuits, combining exact delay logic rewriting and Boolean optimization techniques, attaining unprecedented results. We improve 9/10 of the best known results in the EPFL arithmetic delay synthesis competition, outperforming previous best results up to 3x. Embedded in a commercial EDA flow for ASICs, our exact delay synthesis techniques reduce the total negative slack by 12.17%, after physical implementation, at negligible area and runtime costs.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Enabling exact delay synthesis\",\"authors\":\"L. Amarù, Mathias Soeken, P. Vuillod, Jiong Luo, A. Mishchenko, P. Gaillardon, Janet Olson, R. Brayton, G. Micheli\",\"doi\":\"10.1109/ICCAD.2017.8203799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given (i) a Boolean function, (ii) a set of arrival times at the inputs, and (iii) a gate library with associated delay values, the exact delay synthesis problem asks for a circuit implementation which minimizes the arrival time at the output(s). The exact delay synthesis problem, with given input arrival times, relates to computing the communication complexity of a Boolean function, which is an intractable problem. Input arrival times are variable and can take any value, thereby making the exact delay synthesis search space infinite. This paper presents theory and algorithms for exact delay synthesis. We introduce the theory of equioptimizable arrival times, which allows us to partition all arrival time patterns into a finite set of equivalence classes. Thanks to this new theory, we create for the first time exact delay circuit databases covering all Boolean functions up to 5 variables and all possible arrival time patterns. We describe further arrival time compression techniques which enable the creation of larger databases. We propose an enhanced delay synthesis flow capable of dealing with large circuits, combining exact delay logic rewriting and Boolean optimization techniques, attaining unprecedented results. We improve 9/10 of the best known results in the EPFL arithmetic delay synthesis competition, outperforming previous best results up to 3x. Embedded in a commercial EDA flow for ASICs, our exact delay synthesis techniques reduce the total negative slack by 12.17%, after physical implementation, at negligible area and runtime costs.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

给定(i)一个布尔函数,(ii)一组到达输入端的时间,以及(iii)一个带有相关延迟值的门库,精确的延迟合成问题要求一个最小化到达输出端的时间的电路实现。给定输入到达时间下的精确延迟合成问题涉及布尔函数的通信复杂度计算,是一个棘手的问题。输入到达时间是可变的,可以取任意值,从而使精确延迟综合搜索空间无限。本文给出了精确延迟合成的理论和算法。我们引入了等优化到达时间理论,它允许我们将所有到达时间模式划分为有限的等价类集合。由于这个新理论,我们首次创建了精确的延迟电路数据库,涵盖了所有布尔函数最多5个变量和所有可能的到达时间模式。我们描述了进一步的到达时间压缩技术,它可以创建更大的数据库。我们提出了一种能够处理大型电路的增强延迟合成流,结合了精确的延迟逻辑重写和布尔优化技术,获得了前所未有的结果。我们提高了EPFL算法延迟合成竞赛中最知名结果的9/10,比之前的最佳结果高出3倍。我们的精确延迟合成技术嵌入到用于asic的商业EDA流程中,在物理实现后,以可忽略不计的面积和运行时间成本将总负空闲减少12.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling exact delay synthesis
Given (i) a Boolean function, (ii) a set of arrival times at the inputs, and (iii) a gate library with associated delay values, the exact delay synthesis problem asks for a circuit implementation which minimizes the arrival time at the output(s). The exact delay synthesis problem, with given input arrival times, relates to computing the communication complexity of a Boolean function, which is an intractable problem. Input arrival times are variable and can take any value, thereby making the exact delay synthesis search space infinite. This paper presents theory and algorithms for exact delay synthesis. We introduce the theory of equioptimizable arrival times, which allows us to partition all arrival time patterns into a finite set of equivalence classes. Thanks to this new theory, we create for the first time exact delay circuit databases covering all Boolean functions up to 5 variables and all possible arrival time patterns. We describe further arrival time compression techniques which enable the creation of larger databases. We propose an enhanced delay synthesis flow capable of dealing with large circuits, combining exact delay logic rewriting and Boolean optimization techniques, attaining unprecedented results. We improve 9/10 of the best known results in the EPFL arithmetic delay synthesis competition, outperforming previous best results up to 3x. Embedded in a commercial EDA flow for ASICs, our exact delay synthesis techniques reduce the total negative slack by 12.17%, after physical implementation, at negligible area and runtime costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信