具有间接信号的指数衰减扩散趋化系统

Pan Zheng, Jie Xing
{"title":"具有间接信号的指数衰减扩散趋化系统","authors":"Pan Zheng, Jie Xing","doi":"10.3934/cpaa.2022044","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{eqnarray*} \\label{1a} \\left\\{ \\begin{split}{} &u_t = \\nabla\\cdot(D(u)\\nabla u)-\\nabla\\cdot(S(u)\\nabla v), &(x,t)\\in \\Omega\\times (0,\\infty), \\\\ &v_t = \\Delta v+h(v,w), &(x,t)\\in \\Omega\\times (0,\\infty), \\\\ &w_t = \\Delta w- w+u, &(x,t)\\in \\Omega\\times (0,\\infty), \\end{split} \\right. \\end{eqnarray*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a smoothly bounded domain <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega\\subset \\mathbb{R}^{n} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ n\\geq2 $\\end{document}</tex-math></inline-formula>, where the nonlinear diffusivity <inline-formula><tex-math id=\"M3\">\\begin{document}$ D $\\end{document}</tex-math></inline-formula> and chemosensitivity <inline-formula><tex-math id=\"M4\">\\begin{document}$ S $\\end{document}</tex-math></inline-formula> are supposed to satisfy</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ K_{1}e^{-\\beta^{-}s}\\leq D(s) \\leq K_{2}e^{-\\beta^{+}s} \\;\\;\\;{\\rm{and}}\\;\\;\\;\\frac{D(s)}{S(s)}\\geq K_{3}s^{-\\alpha}+\\gamma, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the constants <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ K_{1},K_{2},K_{3}>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\alpha,\\gamma\\geq0 $\\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\"M8\">\\begin{document}$ h(v,w) = -v+w $\\end{document}</tex-math></inline-formula>, we study the global existence and boundedness of solutions for the above system provided that <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\alpha\\in[0,\\frac{2}{n}) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>\\frac{n}{2} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\gamma>1 $\\end{document}</tex-math></inline-formula> and the initial mass of <inline-formula><tex-math id=\"M12\">\\begin{document}$ u_{0} $\\end{document}</tex-math></inline-formula> is small enough. Moreover, it is proved that the global bounded solution <inline-formula><tex-math id=\"M13\">\\begin{document}$ (u,v,w) $\\end{document}</tex-math></inline-formula> converges to <inline-formula><tex-math id=\"M14\">\\begin{document}$ (\\overline{u_{0}},\\overline{u_{0}},\\overline{u_{0}}) $\\end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id=\"M15\">\\begin{document}$ L^{\\infty} $\\end{document}</tex-math></inline-formula>-norm as <inline-formula><tex-math id=\"M16\">\\begin{document}$ t\\rightarrow \\infty $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M17\">\\begin{document}$ \\overline{u_{0}} = \\frac{1}{|\\Omega|}\\int_{\\Omega}u_{0}(x)dx $\\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\"M18\">\\begin{document}$ h(v,w) = -vw $\\end{document}</tex-math></inline-formula>, it is shown that this system possesses a unique uniformly bounded classical solution if <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\alpha\\geq0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M20\">\\begin{document}$ \\gamma>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M21\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>\\frac{n}{2} $\\end{document}</tex-math></inline-formula>. Furthermore, if <inline-formula><tex-math id=\"M22\">\\begin{document}$ n = 2 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M23\">\\begin{document}$ \\alpha\\geq0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M24\">\\begin{document}$ \\gamma\\geq0 $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M25\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>\\varepsilon $\\end{document}</tex-math></inline-formula> with some <inline-formula><tex-math id=\"M26\">\\begin{document}$ \\varepsilon>0 $\\end{document}</tex-math></inline-formula>, we only obtain the global existence of solutions for the above system.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On an exponentially decaying diffusive chemotaxis system with indirect signals\",\"authors\":\"Pan Zheng, Jie Xing\",\"doi\":\"10.3934/cpaa.2022044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{eqnarray*} \\\\label{1a} \\\\left\\\\{ \\\\begin{split}{} &u_t = \\\\nabla\\\\cdot(D(u)\\\\nabla u)-\\\\nabla\\\\cdot(S(u)\\\\nabla v), &(x,t)\\\\in \\\\Omega\\\\times (0,\\\\infty), \\\\\\\\ &v_t = \\\\Delta v+h(v,w), &(x,t)\\\\in \\\\Omega\\\\times (0,\\\\infty), \\\\\\\\ &w_t = \\\\Delta w- w+u, &(x,t)\\\\in \\\\Omega\\\\times (0,\\\\infty), \\\\end{split} \\\\right. \\\\end{eqnarray*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a smoothly bounded domain <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Omega\\\\subset \\\\mathbb{R}^{n} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ n\\\\geq2 $\\\\end{document}</tex-math></inline-formula>, where the nonlinear diffusivity <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ D $\\\\end{document}</tex-math></inline-formula> and chemosensitivity <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ S $\\\\end{document}</tex-math></inline-formula> are supposed to satisfy</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ K_{1}e^{-\\\\beta^{-}s}\\\\leq D(s) \\\\leq K_{2}e^{-\\\\beta^{+}s} \\\\;\\\\;\\\\;{\\\\rm{and}}\\\\;\\\\;\\\\;\\\\frac{D(s)}{S(s)}\\\\geq K_{3}s^{-\\\\alpha}+\\\\gamma, $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the constants <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\beta^{-}\\\\geq \\\\beta^{+}>0 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ K_{1},K_{2},K_{3}>0 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\alpha,\\\\gamma\\\\geq0 $\\\\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ h(v,w) = -v+w $\\\\end{document}</tex-math></inline-formula>, we study the global existence and boundedness of solutions for the above system provided that <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\alpha\\\\in[0,\\\\frac{2}{n}) $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\beta^{-}\\\\geq \\\\beta^{+}>\\\\frac{n}{2} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ \\\\gamma>1 $\\\\end{document}</tex-math></inline-formula> and the initial mass of <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ u_{0} $\\\\end{document}</tex-math></inline-formula> is small enough. Moreover, it is proved that the global bounded solution <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ (u,v,w) $\\\\end{document}</tex-math></inline-formula> converges to <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ (\\\\overline{u_{0}},\\\\overline{u_{0}},\\\\overline{u_{0}}) $\\\\end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ L^{\\\\infty} $\\\\end{document}</tex-math></inline-formula>-norm as <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ t\\\\rightarrow \\\\infty $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ \\\\overline{u_{0}} = \\\\frac{1}{|\\\\Omega|}\\\\int_{\\\\Omega}u_{0}(x)dx $\\\\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ h(v,w) = -vw $\\\\end{document}</tex-math></inline-formula>, it is shown that this system possesses a unique uniformly bounded classical solution if <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ \\\\alpha\\\\geq0 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M20\\\">\\\\begin{document}$ \\\\gamma>0 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M21\\\">\\\\begin{document}$ \\\\beta^{-}\\\\geq \\\\beta^{+}>\\\\frac{n}{2} $\\\\end{document}</tex-math></inline-formula>. Furthermore, if <inline-formula><tex-math id=\\\"M22\\\">\\\\begin{document}$ n = 2 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M23\\\">\\\\begin{document}$ \\\\alpha\\\\geq0 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M24\\\">\\\\begin{document}$ \\\\gamma\\\\geq0 $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M25\\\">\\\\begin{document}$ \\\\beta^{-}\\\\geq \\\\beta^{+}>\\\\varepsilon $\\\\end{document}</tex-math></inline-formula> with some <inline-formula><tex-math id=\\\"M26\\\">\\\\begin{document}$ \\\\varepsilon>0 $\\\\end{document}</tex-math></inline-formula>, we only obtain the global existence of solutions for the above system.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure &amp; Applied Analysis\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure &amp; Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption \begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} &u_t = \nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v), &(x,t)\in \Omega\times (0,\infty), \\ &v_t = \Delta v+h(v,w), &(x,t)\in \Omega\times (0,\infty), \\ &w_t = \Delta w- w+u, &(x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $\end{document} under homogeneous Neumann boundary conditions in a smoothly bounded domain \begin{document}$ \Omega\subset \mathbb{R}^{n} $\end{document}, \begin{document}$ n\geq2 $\end{document}, where the nonlinear diffusivity \begin{document}$ D $\end{document} and chemosensitivity \begin{document}$ S $\end{document} are supposed to satisfy \begin{document}$ K_{1}e^{-\beta^{-}s}\leq D(s) \leq K_{2}e^{-\beta^{+}s} \;\;\;{\rm{and}}\;\;\;\frac{D(s)}{S(s)}\geq K_{3}s^{-\alpha}+\gamma, $\end{document} with the constants \begin{document}$ \beta^{-}\geq \beta^{+}>0 $\end{document}, \begin{document}$ K_{1},K_{2},K_{3}>0 $\end{document} and \begin{document}$ \alpha,\gamma\geq0 $\end{document}. When \begin{document}$ h(v,w) = -v+w $\end{document}, we study the global existence and boundedness of solutions for the above system provided that \begin{document}$ \alpha\in[0,\frac{2}{n}) $\end{document}, \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}, \begin{document}$ \gamma>1 $\end{document} and the initial mass of \begin{document}$ u_{0} $\end{document} is small enough. Moreover, it is proved that the global bounded solution \begin{document}$ (u,v,w) $\end{document} converges to \begin{document}$ (\overline{u_{0}},\overline{u_{0}},\overline{u_{0}}) $\end{document} in the \begin{document}$ L^{\infty} $\end{document}-norm as \begin{document}$ t\rightarrow \infty $\end{document}, where \begin{document}$ \overline{u_{0}} = \frac{1}{|\Omega|}\int_{\Omega}u_{0}(x)dx $\end{document}. When \begin{document}$ h(v,w) = -vw $\end{document}, it is shown that this system possesses a unique uniformly bounded classical solution if \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma>0 $\end{document} and \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}. Furthermore, if \begin{document}$ n = 2 $\end{document}, \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma\geq0 $\end{document}, and \begin{document}$ \beta^{-}\geq \beta^{+}>\varepsilon $\end{document} with some \begin{document}$ \varepsilon>0 $\end{document}, we only obtain the global existence of solutions for the above system.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an exponentially decaying diffusive chemotaxis system with indirect signals

This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption

under homogeneous Neumann boundary conditions in a smoothly bounded domain \begin{document}$ \Omega\subset \mathbb{R}^{n} $\end{document}, \begin{document}$ n\geq2 $\end{document}, where the nonlinear diffusivity \begin{document}$ D $\end{document} and chemosensitivity \begin{document}$ S $\end{document} are supposed to satisfy

with the constants \begin{document}$ \beta^{-}\geq \beta^{+}>0 $\end{document}, \begin{document}$ K_{1},K_{2},K_{3}>0 $\end{document} and \begin{document}$ \alpha,\gamma\geq0 $\end{document}. When \begin{document}$ h(v,w) = -v+w $\end{document}, we study the global existence and boundedness of solutions for the above system provided that \begin{document}$ \alpha\in[0,\frac{2}{n}) $\end{document}, \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}, \begin{document}$ \gamma>1 $\end{document} and the initial mass of \begin{document}$ u_{0} $\end{document} is small enough. Moreover, it is proved that the global bounded solution \begin{document}$ (u,v,w) $\end{document} converges to \begin{document}$ (\overline{u_{0}},\overline{u_{0}},\overline{u_{0}}) $\end{document} in the \begin{document}$ L^{\infty} $\end{document}-norm as \begin{document}$ t\rightarrow \infty $\end{document}, where \begin{document}$ \overline{u_{0}} = \frac{1}{|\Omega|}\int_{\Omega}u_{0}(x)dx $\end{document}. When \begin{document}$ h(v,w) = -vw $\end{document}, it is shown that this system possesses a unique uniformly bounded classical solution if \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma>0 $\end{document} and \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}. Furthermore, if \begin{document}$ n = 2 $\end{document}, \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma\geq0 $\end{document}, and \begin{document}$ \beta^{-}\geq \beta^{+}>\varepsilon $\end{document} with some \begin{document}$ \varepsilon>0 $\end{document}, we only obtain the global existence of solutions for the above system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信