{"title":"神经解码中的前景注意:引导环路c- dec重构fMRI视觉刺激图像","authors":"Kai Chen, Yongqiang Ma, Mingyang Sheng, N. Zheng","doi":"10.1109/IJCNN55064.2022.9892276","DOIUrl":null,"url":null,"abstract":"The reconstruction of visual stimulus images from functional Magnetic Resonance Imaging (fMRI) has received extensive attention in recent years, which provides a possibility to interpret the human brain. Due to the high-dimensional and high-noise characteristics of fMRI data, how to extract stable, reliable and useful information from fMRI data for image reconstruction has become a challenging problem. Inspired by the mechanism of human visual attention, in this paper, we propose a novel method of reconstructing visual stimulus images, which first decodes human visual salient region from fMRI, we define human visual salient region as foreground attention (F-attention), and then reconstructs the visual images guided by F-attention. Because the human brain is strongly wound into sulci and gyri, some spatially adjacent voxels are not connected in practice. Therefore, it is necessary to consider the global information when decoding fMRI, so we introduce the self-attention module for capturing global information into the process of decoding F-attention. In addition, in order to obtain more loss constraints in the training process of encoder-decoder, we also propose a new training strategy called Loop-Enc-Dec. The experimental results show that the F-attention decoder decodes the visual attention from fMRI successfully, and the Loop-Enc-Dec guided by F-attention can also well reconstruct the visual stimulus images.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Foreground-attention in neural decoding: Guiding Loop-Enc-Dec to reconstruct visual stimulus images from fMRI\",\"authors\":\"Kai Chen, Yongqiang Ma, Mingyang Sheng, N. Zheng\",\"doi\":\"10.1109/IJCNN55064.2022.9892276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconstruction of visual stimulus images from functional Magnetic Resonance Imaging (fMRI) has received extensive attention in recent years, which provides a possibility to interpret the human brain. Due to the high-dimensional and high-noise characteristics of fMRI data, how to extract stable, reliable and useful information from fMRI data for image reconstruction has become a challenging problem. Inspired by the mechanism of human visual attention, in this paper, we propose a novel method of reconstructing visual stimulus images, which first decodes human visual salient region from fMRI, we define human visual salient region as foreground attention (F-attention), and then reconstructs the visual images guided by F-attention. Because the human brain is strongly wound into sulci and gyri, some spatially adjacent voxels are not connected in practice. Therefore, it is necessary to consider the global information when decoding fMRI, so we introduce the self-attention module for capturing global information into the process of decoding F-attention. In addition, in order to obtain more loss constraints in the training process of encoder-decoder, we also propose a new training strategy called Loop-Enc-Dec. The experimental results show that the F-attention decoder decodes the visual attention from fMRI successfully, and the Loop-Enc-Dec guided by F-attention can also well reconstruct the visual stimulus images.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Foreground-attention in neural decoding: Guiding Loop-Enc-Dec to reconstruct visual stimulus images from fMRI
The reconstruction of visual stimulus images from functional Magnetic Resonance Imaging (fMRI) has received extensive attention in recent years, which provides a possibility to interpret the human brain. Due to the high-dimensional and high-noise characteristics of fMRI data, how to extract stable, reliable and useful information from fMRI data for image reconstruction has become a challenging problem. Inspired by the mechanism of human visual attention, in this paper, we propose a novel method of reconstructing visual stimulus images, which first decodes human visual salient region from fMRI, we define human visual salient region as foreground attention (F-attention), and then reconstructs the visual images guided by F-attention. Because the human brain is strongly wound into sulci and gyri, some spatially adjacent voxels are not connected in practice. Therefore, it is necessary to consider the global information when decoding fMRI, so we introduce the self-attention module for capturing global information into the process of decoding F-attention. In addition, in order to obtain more loss constraints in the training process of encoder-decoder, we also propose a new training strategy called Loop-Enc-Dec. The experimental results show that the F-attention decoder decodes the visual attention from fMRI successfully, and the Loop-Enc-Dec guided by F-attention can also well reconstruct the visual stimulus images.