零电压开关实现的一种虚拟无限电容

Guy Yona, G. Weiss
{"title":"零电压开关实现的一种虚拟无限电容","authors":"Guy Yona, G. Weiss","doi":"10.1109/POWERENG.2015.7266311","DOIUrl":null,"url":null,"abstract":"We define the virtual infinite capacitor (VIC) as a nonlinear capacitor that has the property that for an interval of the charge Q (the operating range), the voltage V remains constant. We propose a lossless zero-voltage switching realization for the VIC using a switched power converter and capacitors. This circuit is simple but it requires a complex control algorithm that we describe. There are two controllers needed to operate a VIC: the voltage controller acts fast to maintain the desired terminal voltage, while the charge controller acts more slowly and maintains the charge Q in the desired operating range by influencing the incoming current. The VIC is useful as a filter capacitor for various applications, for example power factor compensators (PFC), as we describe. In spite of using small capacitors, the VIC can replace a very large capacitor in applications that do not require substantial energy storage. We give simulation results for a PFC working in critical conduction mode with a VIC for output voltage filtering.","PeriodicalId":334135,"journal":{"name":"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Zero-voltage switching implementation of a virtual infinite capacitor\",\"authors\":\"Guy Yona, G. Weiss\",\"doi\":\"10.1109/POWERENG.2015.7266311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the virtual infinite capacitor (VIC) as a nonlinear capacitor that has the property that for an interval of the charge Q (the operating range), the voltage V remains constant. We propose a lossless zero-voltage switching realization for the VIC using a switched power converter and capacitors. This circuit is simple but it requires a complex control algorithm that we describe. There are two controllers needed to operate a VIC: the voltage controller acts fast to maintain the desired terminal voltage, while the charge controller acts more slowly and maintains the charge Q in the desired operating range by influencing the incoming current. The VIC is useful as a filter capacitor for various applications, for example power factor compensators (PFC), as we describe. In spite of using small capacitors, the VIC can replace a very large capacitor in applications that do not require substantial energy storage. We give simulation results for a PFC working in critical conduction mode with a VIC for output voltage filtering.\",\"PeriodicalId\":334135,\"journal\":{\"name\":\"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERENG.2015.7266311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERENG.2015.7266311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们将虚拟无限电容器(VIC)定义为一种非线性电容器,其特性是在充电Q(工作范围)的间隔内,电压V保持恒定。我们提出了一种使用开关电源转换器和电容器的无损零电压开关实现VIC。这个电路很简单,但它需要我们描述的复杂的控制算法。操作VIC需要两个控制器:电压控制器动作快,以维持所需的终端电压,而充电控制器动作慢,通过影响输入电流,使充电Q保持在所需的工作范围内。VIC可作为各种应用的滤波电容,例如我们所描述的功率因数补偿器(PFC)。尽管使用小型电容器,但VIC可以在不需要大量能量存储的应用中取代非常大的电容器。给出了一种工作在临界导通模式下的PFC的仿真结果,该PFC采用VIC进行输出电压滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-voltage switching implementation of a virtual infinite capacitor
We define the virtual infinite capacitor (VIC) as a nonlinear capacitor that has the property that for an interval of the charge Q (the operating range), the voltage V remains constant. We propose a lossless zero-voltage switching realization for the VIC using a switched power converter and capacitors. This circuit is simple but it requires a complex control algorithm that we describe. There are two controllers needed to operate a VIC: the voltage controller acts fast to maintain the desired terminal voltage, while the charge controller acts more slowly and maintains the charge Q in the desired operating range by influencing the incoming current. The VIC is useful as a filter capacitor for various applications, for example power factor compensators (PFC), as we describe. In spite of using small capacitors, the VIC can replace a very large capacitor in applications that do not require substantial energy storage. We give simulation results for a PFC working in critical conduction mode with a VIC for output voltage filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信