函数优化中的多种群自适应聚集进化算法

Si-Duo Chen, Zhang-can Huang
{"title":"函数优化中的多种群自适应聚集进化算法","authors":"Si-Duo Chen, Zhang-can Huang","doi":"10.1109/CEC.2000.870383","DOIUrl":null,"url":null,"abstract":"The effect of population isolation is discussed by means of an analysis of the domains of attraction of local optima. Separation among populations and adaptive gathering of the initial population are achieved by local evolution, so as to transform the multi-modal function optimization into a uni-modal function optimization. Combining the space-division-based (/spl mu/+1) selection approach, which has a rapid convergence speed in uni-modal function optimization, a new evolutionary algorithm is presented to automatically separate and gather the initial population according to its domains of attraction. Numerical simulation results show the global searching ability of the new algorithm.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-population adaptive-gathering evolutionary algorithm in function optimization\",\"authors\":\"Si-Duo Chen, Zhang-can Huang\",\"doi\":\"10.1109/CEC.2000.870383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of population isolation is discussed by means of an analysis of the domains of attraction of local optima. Separation among populations and adaptive gathering of the initial population are achieved by local evolution, so as to transform the multi-modal function optimization into a uni-modal function optimization. Combining the space-division-based (/spl mu/+1) selection approach, which has a rapid convergence speed in uni-modal function optimization, a new evolutionary algorithm is presented to automatically separate and gather the initial population according to its domains of attraction. Numerical simulation results show the global searching ability of the new algorithm.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"257 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过对局部最优吸引域的分析,讨论了种群隔离的影响。通过局部进化实现种群间的分离和初始种群的自适应聚集,将多模态函数优化转化为单模态函数优化。结合单峰函数优化中收敛速度快的基于空间划分的(/spl mu/+1)选择方法,提出了一种根据吸引域自动分离和聚集初始种群的进化算法。数值仿真结果表明,该算法具有良好的全局搜索能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-population adaptive-gathering evolutionary algorithm in function optimization
The effect of population isolation is discussed by means of an analysis of the domains of attraction of local optima. Separation among populations and adaptive gathering of the initial population are achieved by local evolution, so as to transform the multi-modal function optimization into a uni-modal function optimization. Combining the space-division-based (/spl mu/+1) selection approach, which has a rapid convergence speed in uni-modal function optimization, a new evolutionary algorithm is presented to automatically separate and gather the initial population according to its domains of attraction. Numerical simulation results show the global searching ability of the new algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信