M. Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta, F. Koushanfar, T. Simunic
{"title":"Deep Learning Acceleration with Neuron-to-Memory Transformation","authors":"M. Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta, F. Koushanfar, T. Simunic","doi":"10.1109/HPCA47549.2020.00011","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNN) have demonstrated effectiveness for various applications such as image processing, video segmentation, and speech recognition. Running state-of-theart DNNs on current systems mostly relies on either generalpurpose processors, ASIC designs, or FPGA accelerators, all of which suffer from data movements due to the limited on-chip memory and data transfer bandwidth. In this work, we propose a novel framework, called RAPIDNN, which performs neuron-to-memory transformation in order to accelerate DNNs in a highly parallel architecture. RAPIDNN reinterprets a DNN model and maps it into a specialized accelerator, which is designed using non-volatile memory blocks that model four fundamental DNN operations, i.e., multiplication, addition, activation functions, and pooling. The framework extracts representative operands of a DNN model, e.g., weights and input values, using clustering methods to optimize the model for in-memory processing. Then, it maps the extracted operands and their pre-computed results into the accelerator memory blocks. At runtime, the accelerator identifies computation results based on efficient in-memory search capability which also provides tunability of approximation to improve computation efficiency further. Our evaluation shows that RAPIDNN achieves 68.4×, 49.5× energy efficiency improvement and 48.1×, 10.9× speedup as compared to ISAAC and PipeLayer, the state-of-the-art DNN accelerators, while ensuring less than 0.5% quality loss.","PeriodicalId":339648,"journal":{"name":"2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA47549.2020.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Acceleration with Neuron-to-Memory Transformation
Deep neural networks (DNN) have demonstrated effectiveness for various applications such as image processing, video segmentation, and speech recognition. Running state-of-theart DNNs on current systems mostly relies on either generalpurpose processors, ASIC designs, or FPGA accelerators, all of which suffer from data movements due to the limited on-chip memory and data transfer bandwidth. In this work, we propose a novel framework, called RAPIDNN, which performs neuron-to-memory transformation in order to accelerate DNNs in a highly parallel architecture. RAPIDNN reinterprets a DNN model and maps it into a specialized accelerator, which is designed using non-volatile memory blocks that model four fundamental DNN operations, i.e., multiplication, addition, activation functions, and pooling. The framework extracts representative operands of a DNN model, e.g., weights and input values, using clustering methods to optimize the model for in-memory processing. Then, it maps the extracted operands and their pre-computed results into the accelerator memory blocks. At runtime, the accelerator identifies computation results based on efficient in-memory search capability which also provides tunability of approximation to improve computation efficiency further. Our evaluation shows that RAPIDNN achieves 68.4×, 49.5× energy efficiency improvement and 48.1×, 10.9× speedup as compared to ISAAC and PipeLayer, the state-of-the-art DNN accelerators, while ensuring less than 0.5% quality loss.