杨-米尔斯理论协变分方法中的热力学和非高斯测度

M. Quandt, H. Reinhardt, D. Campagnari
{"title":"杨-米尔斯理论协变分方法中的热力学和非高斯测度","authors":"M. Quandt, H. Reinhardt, D. Campagnari","doi":"10.22323/1.336.0059","DOIUrl":null,"url":null,"abstract":"The covariant variational approach to Yang-Mills theory is further developed. After discussing the foundations of the method both at zero and finite temperature, we briefly recall the effective action for the Polyakov loop and the critical properties of the deconfinement phase transition within this approach. The thermodynamics of pure Yang-Mills theory are studied in detail and the resulting equation of state is compared to lattice data. While there is good agreement in the deconfined (high-temperature) phase, a small but non-zero pressure is predicted in the confined phase at low temperatures, in contrast to physical expectations. We propose possible improvements to address this issue. Finally, we discuss the combination of the variational approach with Dyson-Schwinger techniques and argue that the method can be used as a tool to determine the optimal vertices for a truncated set of Dyson-Schwinger equations. We briefly lay out how this technique could be applied to Yang-Mills theory at zero temperature.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics and non-Gaussian Measures in the Covariant Variational Approach to Yang-Mills Theory\",\"authors\":\"M. Quandt, H. Reinhardt, D. Campagnari\",\"doi\":\"10.22323/1.336.0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The covariant variational approach to Yang-Mills theory is further developed. After discussing the foundations of the method both at zero and finite temperature, we briefly recall the effective action for the Polyakov loop and the critical properties of the deconfinement phase transition within this approach. The thermodynamics of pure Yang-Mills theory are studied in detail and the resulting equation of state is compared to lattice data. While there is good agreement in the deconfined (high-temperature) phase, a small but non-zero pressure is predicted in the confined phase at low temperatures, in contrast to physical expectations. We propose possible improvements to address this issue. Finally, we discuss the combination of the variational approach with Dyson-Schwinger techniques and argue that the method can be used as a tool to determine the optimal vertices for a truncated set of Dyson-Schwinger equations. We briefly lay out how this technique could be applied to Yang-Mills theory at zero temperature.\",\"PeriodicalId\":441384,\"journal\":{\"name\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.336.0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进一步发展了杨-米尔斯理论的协变变分方法。在讨论了该方法在零温度和有限温度下的基础之后,我们简要回顾了Polyakov环的有效作用和该方法中去定义相变的关键性质。详细研究了纯杨-米尔斯理论的热力学,并将所得的状态方程与晶格数据进行了比较。虽然在限定相(高温相)中有很好的一致性,但在低温条件下,与物理期望相反,在限定相中预测了一个小但非零的压力。我们提出可能的改进来解决这个问题。最后,我们讨论了变分方法与Dyson-Schwinger技术的结合,并认为该方法可以用作确定截断Dyson-Schwinger方程集的最优顶点的工具。我们简要地阐述了如何将这种技术应用于零温度下的杨-米尔斯理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamics and non-Gaussian Measures in the Covariant Variational Approach to Yang-Mills Theory
The covariant variational approach to Yang-Mills theory is further developed. After discussing the foundations of the method both at zero and finite temperature, we briefly recall the effective action for the Polyakov loop and the critical properties of the deconfinement phase transition within this approach. The thermodynamics of pure Yang-Mills theory are studied in detail and the resulting equation of state is compared to lattice data. While there is good agreement in the deconfined (high-temperature) phase, a small but non-zero pressure is predicted in the confined phase at low temperatures, in contrast to physical expectations. We propose possible improvements to address this issue. Finally, we discuss the combination of the variational approach with Dyson-Schwinger techniques and argue that the method can be used as a tool to determine the optimal vertices for a truncated set of Dyson-Schwinger equations. We briefly lay out how this technique could be applied to Yang-Mills theory at zero temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信