Md Anisuzzaman Mondal, Y. Takagi, S. Baba, K. Hamano
{"title":"牛精子热致性中钙通道和细胞内钙的参与","authors":"Md Anisuzzaman Mondal, Y. Takagi, S. Baba, K. Hamano","doi":"10.1262/jrd.2016-107","DOIUrl":null,"url":null,"abstract":"Thermotaxis that sperm migrate to higher temperature area has been confirmed in rabbit and human. In this study, we examined the migration ability of bull sperm in a temperature gradient to confirm thermotaxis and elucidate the involvement of calcium in such thermotaxis, as well as the relation between sperm capacitation and bull fertility. Thermotaxis was evaluated in a temperature gradient of 34–42ºC using a cross-type column 22-mm long, 40-mm wide, and 100-μm deep. Significantly more sperm migrated to the high-temperature area of 39ºC in a 2ºC temperature gradient, and to 40ºC in a 1ºC temperature gradient. In calcium-free, BAPTA containing medium, and EGTA containing medium, the migrated sperm ratio in the two temperature areas was almost the same. In media containing lanthanum, ruthenium red, and 2APB, we could not confirm thermotaxis. Pre- and post-capacitated sperm migrated to the high-temperature area, expressing thermotaxis. The sperm from high-fertility bulls showed clear thermotaxis. Based on these results, thermotaxis of bull sperm was confirmed and the involvement of both calcium channels and intracellular stored calcium in thermotaxis was suggested. Although the sample size of bulls was quite small, the difference in thermotaxis may have been associated with bull fertility. Sperm thermotaxis evaluation has potential as a predictor of bull fertility.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Involvement of calcium channels and intracellular calcium in bull sperm thermotaxis\",\"authors\":\"Md Anisuzzaman Mondal, Y. Takagi, S. Baba, K. Hamano\",\"doi\":\"10.1262/jrd.2016-107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermotaxis that sperm migrate to higher temperature area has been confirmed in rabbit and human. In this study, we examined the migration ability of bull sperm in a temperature gradient to confirm thermotaxis and elucidate the involvement of calcium in such thermotaxis, as well as the relation between sperm capacitation and bull fertility. Thermotaxis was evaluated in a temperature gradient of 34–42ºC using a cross-type column 22-mm long, 40-mm wide, and 100-μm deep. Significantly more sperm migrated to the high-temperature area of 39ºC in a 2ºC temperature gradient, and to 40ºC in a 1ºC temperature gradient. In calcium-free, BAPTA containing medium, and EGTA containing medium, the migrated sperm ratio in the two temperature areas was almost the same. In media containing lanthanum, ruthenium red, and 2APB, we could not confirm thermotaxis. Pre- and post-capacitated sperm migrated to the high-temperature area, expressing thermotaxis. The sperm from high-fertility bulls showed clear thermotaxis. Based on these results, thermotaxis of bull sperm was confirmed and the involvement of both calcium channels and intracellular stored calcium in thermotaxis was suggested. Although the sample size of bulls was quite small, the difference in thermotaxis may have been associated with bull fertility. Sperm thermotaxis evaluation has potential as a predictor of bull fertility.\",\"PeriodicalId\":416064,\"journal\":{\"name\":\"The Journal of Reproduction and Development\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Reproduction and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2016-107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Reproduction and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1262/jrd.2016-107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Involvement of calcium channels and intracellular calcium in bull sperm thermotaxis
Thermotaxis that sperm migrate to higher temperature area has been confirmed in rabbit and human. In this study, we examined the migration ability of bull sperm in a temperature gradient to confirm thermotaxis and elucidate the involvement of calcium in such thermotaxis, as well as the relation between sperm capacitation and bull fertility. Thermotaxis was evaluated in a temperature gradient of 34–42ºC using a cross-type column 22-mm long, 40-mm wide, and 100-μm deep. Significantly more sperm migrated to the high-temperature area of 39ºC in a 2ºC temperature gradient, and to 40ºC in a 1ºC temperature gradient. In calcium-free, BAPTA containing medium, and EGTA containing medium, the migrated sperm ratio in the two temperature areas was almost the same. In media containing lanthanum, ruthenium red, and 2APB, we could not confirm thermotaxis. Pre- and post-capacitated sperm migrated to the high-temperature area, expressing thermotaxis. The sperm from high-fertility bulls showed clear thermotaxis. Based on these results, thermotaxis of bull sperm was confirmed and the involvement of both calcium channels and intracellular stored calcium in thermotaxis was suggested. Although the sample size of bulls was quite small, the difference in thermotaxis may have been associated with bull fertility. Sperm thermotaxis evaluation has potential as a predictor of bull fertility.