基于频域自由形状复小波的紧密小波框架

H. Toda, Zhong Zhang
{"title":"基于频域自由形状复小波的紧密小波框架","authors":"H. Toda, Zhong Zhang","doi":"10.1109/ICWAPR48189.2019.8946466","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a construction method of a tight wavelet frame using a complex wavelet designed in a free shape on the frequency domain. This method is divided into two parts. First, based on the designed complex wavelet, we construct an approximate tight wavelet frame. Next, based on it, we construct a tight wavelet frame with minor modification. Additionally, for example, we show the construction process of the tight wavelet frame using the approximate Gabor wavelet.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tight Wavelet Frame Using Complex wavelet Designed in Free Shape on Frequency Domain\",\"authors\":\"H. Toda, Zhong Zhang\",\"doi\":\"10.1109/ICWAPR48189.2019.8946466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a construction method of a tight wavelet frame using a complex wavelet designed in a free shape on the frequency domain. This method is divided into two parts. First, based on the designed complex wavelet, we construct an approximate tight wavelet frame. Next, based on it, we construct a tight wavelet frame with minor modification. Additionally, for example, we show the construction process of the tight wavelet frame using the approximate Gabor wavelet.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种在频域上以自由形状设计的复小波构造紧小波框架的方法。该方法分为两部分。首先,在设计的复小波的基础上,构造一个近似紧密小波框架。在此基础上,构造了一个小修改的紧小波框架。此外,举例说明了用近似Gabor小波构造紧小波框架的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Wavelet Frame Using Complex wavelet Designed in Free Shape on Frequency Domain
In this paper, we propose a construction method of a tight wavelet frame using a complex wavelet designed in a free shape on the frequency domain. This method is divided into two parts. First, based on the designed complex wavelet, we construct an approximate tight wavelet frame. Next, based on it, we construct a tight wavelet frame with minor modification. Additionally, for example, we show the construction process of the tight wavelet frame using the approximate Gabor wavelet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信