基于LPP和SVM的高效Web文档分类算法

Ziqiang Wang, Yuxun Liu, Xia Sun
{"title":"基于LPP和SVM的高效Web文档分类算法","authors":"Ziqiang Wang, Yuxun Liu, Xia Sun","doi":"10.1109/CCPR.2008.91","DOIUrl":null,"url":null,"abstract":"With the explosive growth of World Wide Web, it is of great importance to develop methods for the automatic classifying of large collections of documents. To efficiently tackle this problem, a novel document classification algorithm based on locality pursuit projection (LPP) and SVM is proposed in this paper. The high-dimensional document space are first mapped into lower-dimensional space with LPP, the SVM is then used to classify the documents into semantically different classes. Experimental results show that the proposed algorithm achieves much better performance than other classification algorithms.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Web Document Classification Algorithm Based on LPP and SVM\",\"authors\":\"Ziqiang Wang, Yuxun Liu, Xia Sun\",\"doi\":\"10.1109/CCPR.2008.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the explosive growth of World Wide Web, it is of great importance to develop methods for the automatic classifying of large collections of documents. To efficiently tackle this problem, a novel document classification algorithm based on locality pursuit projection (LPP) and SVM is proposed in this paper. The high-dimensional document space are first mapped into lower-dimensional space with LPP, the SVM is then used to classify the documents into semantically different classes. Experimental results show that the proposed algorithm achieves much better performance than other classification algorithms.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着万维网的爆炸式增长,开发对海量文档进行自动分类的方法显得尤为重要。为了有效地解决这一问题,本文提出了一种基于局部追踪投影(LPP)和支持向量机(SVM)的文档分类算法。首先使用LPP将高维文档空间映射到低维空间,然后使用支持向量机对文档进行语义分类。实验结果表明,该算法比其他分类算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Web Document Classification Algorithm Based on LPP and SVM
With the explosive growth of World Wide Web, it is of great importance to develop methods for the automatic classifying of large collections of documents. To efficiently tackle this problem, a novel document classification algorithm based on locality pursuit projection (LPP) and SVM is proposed in this paper. The high-dimensional document space are first mapped into lower-dimensional space with LPP, the SVM is then used to classify the documents into semantically different classes. Experimental results show that the proposed algorithm achieves much better performance than other classification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信