大型任务网络映射的快速生成

Karl-Eduard Berger, François Galea, B. L. Cun, Renaud Sirdey
{"title":"大型任务网络映射的快速生成","authors":"Karl-Eduard Berger, François Galea, B. L. Cun, Renaud Sirdey","doi":"10.1109/IPDPSW.2014.170","DOIUrl":null,"url":null,"abstract":"In the context of networks of massively parallel execution models, optimizing the locality if inter-process communication is a major performance issue. We propose two heuristics to solve a dataflow process network mapping problem, where a network of communicating tasks is placed into a set of processors with limited resource capacities, while minimizing the overall communication bandwidth between processors. Those approaches are designed to tackle instances of over one hundred thousand tasks in acceptable time.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Generation of Large Task Network Mappings\",\"authors\":\"Karl-Eduard Berger, François Galea, B. L. Cun, Renaud Sirdey\",\"doi\":\"10.1109/IPDPSW.2014.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of networks of massively parallel execution models, optimizing the locality if inter-process communication is a major performance issue. We propose two heuristics to solve a dataflow process network mapping problem, where a network of communicating tasks is placed into a set of processors with limited resource capacities, while minimizing the overall communication bandwidth between processors. Those approaches are designed to tackle instances of over one hundred thousand tasks in acceptable time.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在大规模并行执行模型的网络环境中,优化进程间通信的局部性是一个主要的性能问题。我们提出了两种启发式方法来解决数据流进程网络映射问题,其中通信任务网络被放置在一组资源容量有限的处理器中,同时最小化处理器之间的总体通信带宽。这些方法旨在在可接受的时间内处理超过10万个任务的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Generation of Large Task Network Mappings
In the context of networks of massively parallel execution models, optimizing the locality if inter-process communication is a major performance issue. We propose two heuristics to solve a dataflow process network mapping problem, where a network of communicating tasks is placed into a set of processors with limited resource capacities, while minimizing the overall communication bandwidth between processors. Those approaches are designed to tackle instances of over one hundred thousand tasks in acceptable time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信